

LTLARY
UNIVERSITY VITORYIA

State of California THE RESOURCES AGENCY

Department of Water Resources

BULLETIN No. 130-63

HYDROLOGIC DATA: 1963

Volume II: NORTHEASTERN CALIFORNIA

Appendix D: SURFACE WATER QUALITY

Appendix E: GROUND WATER QUALITY

APRIL 1965

HUGO FISHER

Administrator

The Resources Agency

EDMUND G. BROWN
Governor
State of California

WILLIAM E. WARNE

Director

Department of Water Resources

State of California THE RESOURCES AGENCY

Department of Water Resources

BULLETIN No. 130-63

HYDROLOGIC DATA: 1963

Volume II: NORTHEASTERN CALIFORNIA

Appendix D: SURFACE WATER QUALITY

Appendix E: GROUND WATER QUALITY

ORGANIZATION OF BULLETIN NO. 130 SERIES

Volume I - NORTH COASTAL AREA

Volume II - NORTHEASTERN CALIFORNIA

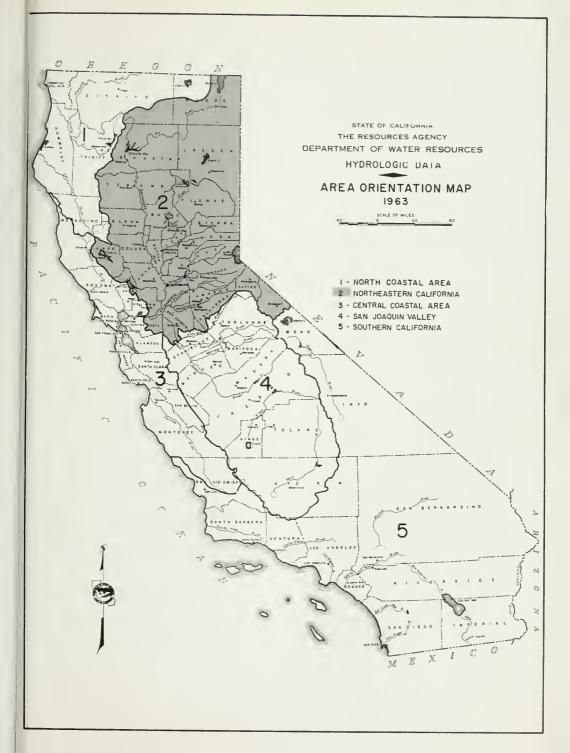
Volume III - CENTRAL COASTAL AREA

Volume IV - SAN JOAQUIN VALLEY

Volume V - SOUTHERN CALIFORNIA

Each volume consists of the following:

TEXT and


Appendix A - CLIMATE

Appendix B - SURFACE WATER FLOW

Appendix C - GROUND WATER MEASUREMENTS

Appendix D - SURFACE WATER QUALITY

Appendix E - GROUND WATER QUALITY

QF I 2

TABLE OF CONTENTS

		Page
ORGA	NIZATION OF BULLETIN NO. 130-63	ii
AREA	ORIENTATION MAP, FIGURE 1	iii
INTR	ODUCTION	1
	Salinity Cbservations	3
	FIGURES	
2	AVERAGE DAILY SPECIFIC CONDUCTANCE SAN JOAQUIN RIVER NEAR VERNALIS (Station 27)	4
3	AVERAGE DAILY SPECIFIC CONDUCTANCE SACRAMENTO RIVER AT WALNUT GROVE (Station 98)	5
	TABLES	
D-1	SAMPLING STATION DATA AND INDEX, CENTRAL VALLEY REGION (No. 5)	6
D-2	SAMPLING STATION DATA AND INDEX, LAHONTAN REGION (No. 6)	9
D-3	ANALYSES OF SURFACE WATER, CENTRAL VALLEY REGION (No. 5)	11
D-4	ANALYSES OF SURFACE WATER, LAHONTAN REGION (No. 6)	113
D-5	SPECTROGRAPHIC ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (No. 5)	123
D-6	SPECTROGRAPHIC ANALYSES OF SURFACE WATER LAHONTAN REGION (No. 6)	125
D-7	RADIOASSAYS OF SURFACE WATER, CENTRAL VALLEY REGION (No. 5)	127
D-8	RADIOASSAYS OF SURFACE WATER, LAHONTAN REGION (No. 6)	133
D-9	ANALYSES OF ORGANIC CHEMICALS IN SURFACE WATER CENTRAL VALLEY REGION (No. 5)	135

		Page
D-10	DESCRIPTION OF SALINITY CBSERVATION STATIONS	137
D-11	MAXIMUM OBSERVED SALINITY AT BAY AND DELTA STATIONS	139
D-12	SALINITY OBSERVATIONS AT BAY AND DELTA STATIONS	141
	PLATES (Bound at end of Appendix E)	
D-1	LINES OF MAXIMUM ANNUAL SALINITY ENCROACHMENT SACRAMENTO-SAN JOAQUIN DELTA AND UPPER BAYS	
D-2	STREAM SAMPLING STATIONS IN NORTHEASTERN CALIFORNIA	

in the logic on F

Boar alphastat stat

coop

pra

U. "Ne

ana

Appendix D

SURFACE WATER QUALITY

The Surface Water Quality Data Program provides basic information about quality characteristics of the State's surface waters. Data presented in this appendix are measured values of the chemical, physical, and radiological characteristics of surface water in Northeastern California, as shown on Figure 1, "Area Orientation Map". The surface water quality program is performed in cooperation with other state, local, and federal agencies.

All data presented in this volume are within Water Pollution Control Board Regions Nos. 5 and 6. Surface water quality data are presented alphabetically by station name as listed in Tables D-1 and D-2, "Sampling Station Data and Index". Plate D-2 shows the location of stream sampling stations. Surface water quality samples are collected at or near tide or stream gaging stations.

The Surface Water Quality Data Program consists of selecting locations to be sampled, collection of samples by department personnel or cooperators, laboratory analysis by an assigned agency, examination of the data to note trends or significant changes, and publication of the data and findings.

Field sampling is performed in accordance with accepted engineering practice. Comments on local conditions are noted in the field books but are not included in the tabulations.

Chemical analyses of surface water samples were performed by the U. S. Geological Survey (USGS) in accordance with USGS Water Supply Paper 1454, "Methods for Collection and Analysis of Water Samples". In addition several analyses were made by the U.S. Bureau of Reclamation in Denver, Colorado and were furnished to the Department.

Figures 2 and 3 show average daily conductance at Stations 27 and 98. This data are obtained by continously recording conductance on a strip chart. Hourly values obtained from this chart are averaged. The average value for the day is shown on the Figures.

are 00

analys

Seore

3:5

area.

one a

276

100

Show

year.

for

Wat.

REC

The compilation of the chemical analyses are reported in Tables D-3 and D-4. Water Temperature is reported in degrees Fahrenheit and is measured in the field at time of sampling. Dissolved oxygen is also measured in the field at time of sampling. Electrical conductivity is reported as micromhos per centimeters at 25°C. Tabulated values for dissolved minerals are the analytical quantity reported in parts per million (ppm) and a computed value for equivalents per million (epm).

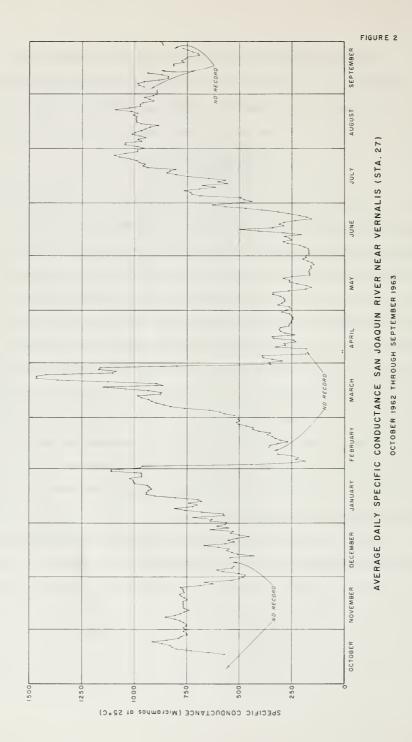
Bacteriologic determinations were made by the California Department of Public Health, Berkeley, and are expressed as the most probable number (MPN) of coliform bacteria per milliliter of sample. These values are given in Tables D-3 and D-4 in the next to the last column on the right side of the sheets. In view of the rapidity and frequency of change in the density of coliform organisms, frequent and lengthy sampling is necessary before a truly reliable evaluation could be made.

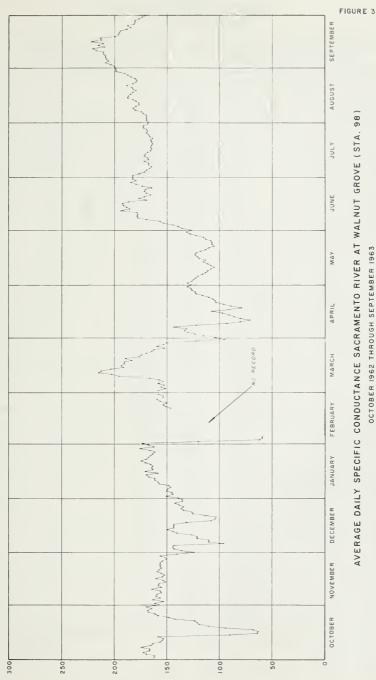
Heavy metal analysis of surface water samples, performed by spectrograph by the USGS, is reported in parts per billion (ppb) and listed in Tables D-5 and D-6, "Spectrographic Analyses of Surface Water".

Analyses for radioactivity were made by the California Disaster Office Laboratory in Sacramento and results are expressed in terms of activity, measured in micromicrocuries per liter which is equivalent to picocuries per liter. The most probable error is reported along with the measured value. The results of these analyses are listed in Tables D-7 and D-8, "Radioassays of Surface Water".

A program of organic sampling was begun in 1962 and all results since inception of the program are reported in Table D-9. The organic samples are composited using carbon absorption techniques. Results of organic analyses are reported in micrograms per liter (essentially parts per billion).

Salinity Observations


5 C.


nutei

nent

Table D-10 lists the salinity sampling stations within the Sacramento-San Joaquin Delta. The stations are referenced to the Golden Gate as mile zero and proceeding upstream through the bay systems to the delta area. The salinity samples are taken, when possible, at four-day intervals one and one-half hours after high-high tide. Salinity concentrations are reported as chloride in parts per million. The location of these stations are shown on Plate D-1, "Lines of Annual Maximum Salinity Encroachment". The maximum annual encroachment of 1000 parts chloride per million parts of water represents the line of salinity encroachment. The lines on Plate D-1 show the 1000 part chloride line for the current water year and other water years of historical interest. Table D-11 lists the maximum observed chlorides for stations during the current year and the historical maximum values for these stations. Complete tabulation of salinity observations made for the water year are given in Table D-12.

The Salinity Observation program is conducted by the Department of Water Resources for the U. S. Bureau of Reclamation under an annual contract.

AVERAGE DAILY SPECIFIC CONDUCTANCE SACRAMENTO RIVER AT WALNUT GROVE (STA. 98)

OCTOBER 1962 THROUGH SEPTEMBER 1963

SPECIFIC CONDUCTANCE (Micromhos at 25°C)

TABLE D-1 SAMPLING STATION DATA AND INDEX

1010 13 "...

true lin

'occione

V41 22

Pages 2

\$4. magazin

larren Serme Street Street SATTE

CENTRAL VALLEY REGION (NO. 5)

Station	Station Number	Location	Period b of Record	Frequency ^C of Sampling	Sampled d by	Analysis an page
American River at Fair Oaks	22d	9n/6r-13	1-38	Q	USBR	D-11
American River, Middle Fork near Auburn	220	12N/9E-6	7-58	В	DWR	D-12, D-127
American River at Nimbus Dam	22a	9N/7E-16	11-58	М	DWR	D-13, D-123, D-127
American River at Sacramento	22	8n/5E-3	4-51 9-62	M A	DWR DWR	D-14, D-123, D-127 D-135
American River, South Fork near Lotus	22c	11N/9E-11	7-58	В	DWR	D-15, D-127
Antelope Creek near Mouth	88 c	26N/2W-17	10-58	М	DWR	D-16, D-127
Antelope Creek mear Red Bluff	88e	27N/2W-8	10-58	М	DWR	D-17, D-127
Battle Creek near Cottonwood	88ъ	29N/3W-1	4-58	М	DWR	D-18, D-127
Bear River near Mouth	20ъ	13N/4E-20	11-58 to 7-63	М	DWR	D-19, D-127
Bear River near Wheatland	78	13N/5E-3	12-51	М	DWR	D-20, D-123, D-127
Big Chico Creek at Chico	85a	22N/1E-28	1-59	М	DWR	D-21, D-127
Blg Chico Creek near Chico	85	22N/2E-9	7-52	М	DWR	D-22
Butte Creek near Chico	84	22N/2E-36	7-52	М	DWR	D-23
Cache Creek near Capay	80	10N/2W-8	12-51	М	DWR	D-24, D-123, D-127
Cache Creek at Righway 53	42a	13N/7W-34	6/62	s	DWR	D-135
Cache Creek near Lower Lake	42	12N/6w-6	4-51	М	DWR	D-25, D-123, D-128,
Cache Creek, North Fork pear Lower Lake	79	14N/6W-31	12-51	М	DWR	D-135 D-26, D-128
Cache Slough below Lindsey Slough	110a	5N/3E-31	4-52	۵	USBR	D-27
Calaveras River at Jenny Lind	16a	3N/10E-27	4-51	М	DWR	D-28, D-128
Calaveras River near Stocktoo	16b	2N/6E-26	7-58	М	DWR	D-29, D-123, D-128
Clear Creek near Igo	12d	31N/6W-27	8-58	М	DWR	D-30, D-128
Clear Lake at Lakeport	41	14N/10W-24	4/51	М	DWR	D-31, D-123, D-128
Clear Lake at Nice	4la	15N/9W-27	6-62 to 9-62	s	DWR	D-135
Colusa Trough near Colusa	87	16N/2W-34	7-62	М	DWR	D-32, D-128
Contra Costa Canal at 1st Pump Lift	109a	2N/2E-25	1-55	М	USBR	D-33
Cosumnes River at McConnell	94a	6N/6E-20	7-58	В	DWR	D-34, D-123, D-128
Cosumnes River at Michigan Bar	94	8n/8E-36	7-52	В	DWR	D-35, D-128
Cottonwood Creek near Cottonwood	12b	29N/3W-7	4-51	М	DWR	D-36, D-128
Cottonwood Creek below North Fork Cottonwood Creek	lla	29N/6W-2	8-58	М	DWR	D-37, D-128
Cottonwood Creek, South Fork above Cottonwood Creek	1116	29N/4W-17	11-58	М	DWR	D-38, D-129
Cow Creek near Millville	88a	311/3%-32	8-58	М	DWR	D-39, D-129
Delta Cross Çbannel near Walnut Grove	98	5N/4E-35	9-52	М	DWR	D-1, D-40, D-123
Dutch Slough at Farrar Park Bridge	108ъ	2N/3E-22	5-55	I	USBR	D-41
Elder Creek at Gerber	95a	25N/3W-2	1-59	М	DMB	D-42, D-129
Elder Creek near Paskenta	13e	25N/6W-14	8-58	М	DWR	D-43, D-129
False River at Webb Pump	112a	3N/3E-36	5-55	I	USBR	D=44
Feather River, Middle Fork near Merrimac	196	21N/6E-2	7-63	М	DWR	D-45, D-123, D-129
Feather River at Nicolaus	20	12N/3E-12	4-51	М	DWR	D-46, D-123, D-129
Feather River, North Fork et Big Bar	19a	23N/5E-32	7-63	м	DWR	D-47, D-123, D-129

o Except as indicated below location is referenced to M1. Dioblo Bose and Meridian
"Numbold: Bose and Meridian
"Son Bernardino Bose and Meridian
Beginning of recard
M. Manniny, B. Bimanihly, Q. Quarterly, S. Semiannually, A. - Annually, I. - Irregular

e Sacramento River at Walnut Grove

TABLE D-1 SAMPLING STATION DATA AND INDEX

CENTRAL VALLEY REGION (NO. 5)

Station	Station Number	Lacation	Periad b af Record	Frequency C of Sampling	Sampled d	Analysis an page
Feather River near Oroville	19	19N/4E-2	4-51	М	DWR	D-48, D-123, D-129
Feather River below Shanghl Bend	20a	14N/3E-11	7-58	М	DWR	D-49, D-129
Feather River, South Fork below Ponderosa Dam	19c	20N/6E-33	7-63	М	DWR	D-50, D-123, D-129
Feather River above Verona	20c	12N/3E-27	7-62	S	DWR	D-135
Grant Line Canal at Tracy Road Bridge	103a	1S/5E-29	7-58	М	DWR	D-51
Indian Creek near Crescent Mills	17d	26N/9E-25	4-51	В	DWR	D-52, D-129
Indian Slough near Brentwood	107	ln/3E-23	9-52	М	DWR	D-53, D-129
Italian Slougn near Mouth	106	1S/4E-7	9-52	М	DWR	D-54, D-130
Lindsey Slough near Rio Vista	110	5N/2E-25	10-52	М	DWR	D-55
Little Potato Slough at Terminous	99	3N/4E-13	9-52	В	DWR	D-56, D-130
McCloud River above Shasta Lake	18	36N/3W-31	4-51	м	DWR	D-57, D-130
Will Creek near Mouth	88	25N/2W-9	7-52	м	DWR	D-58
Mokelumne River below Cosumnes River	23р	5N/5E-29	6-52	I	USBR	D-59
Mokelumne River below Georgians Slough	23e	3N/4E-7	5-52	I	USBR	D-60
Mokelumne River near Lancha Plana	23a	4N/10=-4	4-51	В	DWR	D-61, D-130
Mokelumne River at Woodbridge	23	4N/6E-34	4-51	В	DWR	D-62, D-123, D-130
Old River at Clifton Court Ferry	104	1S/4E-20	9-52	М	DWR	D-63, D-130
Old River at Rolland Tract	108a	2N/4E-19	3-52	М	USER	D-64
Old River at Mandeville Island	112	2N/4E-6	12-54	М	DWR	D-65, D-123
Old River at Orwood Bridge	108	1N/4E-17	9-52	М	DWR	D-66, D-130
Old River near Tracy	103	2S/5E-6	10-52	М	DWF	D-67, D-130
Paynes Creek near Red Bluff	88g	28N/24-3	10-58	М	DWR	D-68, D-130
Pit River near Bieber	17e	37N/7E-34	10-58	М	DWR	D=69, D-130
Pit River near Cenby	17a	41N/9E-10	4-51	М	DWR	D-70, D-123, D-130
Pit River near Montgomery Creek	17	35N/1E-32	4-51	М	DWR	D-71, D-131
Pit River, South Fork near Likely	18a	39N/13E-11	8-58	М	DWR	D-72, D-131
Putah Creek at Diversion to Putah South Canal	8la	8n/1w-31	7-62	S	DWR	D=135
Putah Creek near Winters	81	8n/2w-27	12-51	М	DWR	D-73, D-123, D-131
R. D. 1000 at Second Bannon Slough	15d	9N/4E-27	9-62	A	DWR	D=135
Red Bank Creek near Red Bluff	88a	26N/5W-22	1-59	м	DWR	D-74, D-131
Rock Slough near Knightsen	109	2N/3E-33	9-52	М	DWR	D=75, D=131
Sacramento River at Bend	12c	28N/3W-20	5-55 5-55 to 7-63	M D	DWR USGS	D-76, D-123, D-131 D-77, 78, 79
Sacramento River at Boyer's Bend	14c	13N/1E-22	6-60 to 7-63	D	USGS	D-80, 81
Sacramento River at Butte City	87a	19N/1W-32	5-55 5-55 to 7-63	M D	DWR USGS	D-82, D-131 D-83, 84, 85
Sacramento River at Colusa	13ъ	19N/1W-32	10-58	М	DWR	D-86, D-124, D-131
Sacramento River above Colusa Trough	14b	11N/2E-14	7-60	м	DWR	D-87, D-124, D-131
Sacramento River at Delta	11	36N/5W-35	4-51	М	DWR	D-88, D-131
Sacramento River at Freeport	15ъ	7N/4E-14	6-60 6-60 to 7-63	M D	DWR USGS	D-89, D-124, D-131 D-90, 91

112

3-128

:2

120 125

a Etcept as indicated below location is referenced to M1 Diabla Base and Meridian
"Humboldt Base and Meridian
"San Bernardina Base and Meridian
b Bagining afrecard
M. Manthly, B.-Bimonthly, O-Quarterly, S-Semiannually, A - Annually, I - Irregular, D - Composite of Samples Collected Daily

72500 31F

1de 700

SUSSE SIT Trucker B

Velker 31 Walker Ri

Station	Station Number	Lacation	Period b of Record	Frequency ^C of Sampling	Sampled ^d by	Analysis an Pag e
Sacramento River near Hamilton City	13	55N/TM-50	4-51	М	DWR	D-92, D-124, D-132
Sacramento River at Keswick	12	32N/5W-28	4-51	M	DWR	D-93, D-124, D-132
Sacramento River near Mallard Slough	15e	2N/1E-5	3-55	M	USBR	D-94
Sacramento River at Rio Vista	16	4N/3E-30	4-51	M	DWR	D-95, D-124, D-132
Sacramento River above Sacramento Slough	15e	11N/3E-32	7-62	A	DWR	D-135
Sacramento River at Snodgrass Slough	97	6N/4E-22	6-38	М	USBR	D=96
Sacramento River at Toland Landing	15a	3N/2E-21	6-52	1	USBR	D-97
Sacramento Slough near Knights Landing	14a	11N/2E-20	6-51	М	DWR	D-98, D-132
San Joaquin River at Antioch	28	2N/2E-18	4-51	М	DWR	D-99, D-132
San Joaquin River at Brandt Bridge	101a	1S/6E-9	3-57	Q	USBR	D-100
San Joaquin River at Garwood Bridge	101	1n/6 E-1 6	9-52	М	DWR	D-101
San Joaquin River at Jersey Point	28ъ	2n/3E-6	7-52	I	USBR	D-102
San Joaquin River at Mossdale Bridge	102	2A/6E-4	9-52	М	DWR	D-1D3, D-132, D-135
San Joaquin River at San Andreas Landing	112ъ	3N/3E-13	3-52	М	USBR	D-10 ¹ 4
San Joaquin River near Vernalis	27	3S/6E-13	12-61	Daily		D-3
Stockton Ship Channel on Rindge Island	100	2N/5E-28	9-52	М	DWR	D-105
Stony Creek at Black Butte Dam Site	13e	23N/4W-29	1-58	M	DWR	D-106, D-132
Stony Creek near Hamilton City	13a	22N/24-36	4-51	M	DWR	D-107, D-124, D-132
Thomes Creek near Mouth	95ъ	25N/3W-35	1-59	M	DWR	D-108, D-132
Thomes Creek at Paskenta	13d	23N/6W-4	10-58	М	DWR	D-109, D-132
Yuba River at Marysville	21	15N/4E-18	4-51	В	DWR	D-110, D-124, D-132
Yuba River near Smartville	21a	16N/6E-20	4-51	В	DWR	D-111, D-132

^{O Except as indicated below location is referenced to Mt. Oloblo Base and Meridian "Humbold! Base and Meridian "San Bernardino Base and Meridian "San Base and Meridian Base}

TABLE D-2 SAMPLING STATION DATA AND INDEX

LAHONTAN REGION (NO. 6)

Station	Station Number	Lacation	Period ^b of Record	Frequency ^C of Sompling	Sampled ^d by	Anolysis an Page
Carson River, East Fork near Markleeville	115	108/207 07	0.69			
Carson River, West Fork at Woodfords		10N/20E-27	9-58	В	DWR	D-113, D-133
	115a	11N/19E-34	8-58	В	DWR	D-114, D-133
Lake Tahoe at Bijou	39	13N/18E-33	4-51 to 7-63	М	DWR	D-115, D-133
Lake Tahoe at Tahoe City	38	15N/17E-7	4-51	В	DWR	D-116, D-125, D-1
Lake Tahoe at Tahoe Vista	37	16N/17E-14	4-51 to 7-63	М	DWR	D-117, D-133
Susan River at Susanville	17b	30N/12E-31	4-51	М	DWR	D-118, D-133
Truckee River near Farad	53	18N/17E-12	4-51	М	DWR	D-119, D-125, D-1
Truckee River near Truckee	52	17N/16E-28	4-51	В	DWR	D-120, D-133
Walker River, East near Bridgeport	116A	6N/25E-34	8-58	В	DWR	D-121, D-133
Walker River, West near Coleville	116	6N/23E-9	8-58	В	DWR	D-122, D-133

a Except as indicated below location is referenced to M1 Diablo Base and Meridian "Humbolid Base and Meridian". "San Bernardina Base and Meridian b Beginning of record C M-Manthly, B-Bimanthly, Q-Quarterly, S-Semiannually

24, 247 24, D.1%

24, 0-13

ANALYSES OF SHETACT WATER
PROPERTY WILLIAM (1975, 2)
ARBEITEAN STATE FALL TAKE (1975, 2011)

Trans.

ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (NO. 5) TABLE 0-3

AMERICAN RIVER AT FAIR OAKS (STA. 22d)

		Hordness bid - Coliform Analyzed as CoCO ₃ 11y MPN/ml by 1 Total N C. ppm	USBR				
		Cointorm MPN/mi					
	10,1	- piq Vai Vai Vai					
		Hordness as CoCO ₃ Totol N.C.					
		Totol Pom					
	9	- 00 min	21		19	16	2
	Total	solide solide in ppm	ez 7		99	9	\$
		Other constituents					
		Silico (SiO _B)					
	ioi	Boron Siico (8) (SiO _B)					
million	per million	Fluo- ride (F)					
ports per million	olents p		0.0		0.0	0.0	0
٥	squivalents	Chlo- rids (CI)	7.0		3.6	2.1	1.4
	Ē.	Sul - fots (SO ₄)	2.4		8.4	6.2	8 4
	stituent	Bicar- bonats (HCO ₃)	23		16.0	8	277
ports par	Mineral constituents	Carbon- ote (CO ₃)	0.0		0.0	0.0	000
	ž	Potos- sium (K)	0.0		0.8	1.2	®
		Sodium (No)	2.1		2.5	2,3	व - द
		Mogne- sium (Mg)	1.2		0:0	2.7	2.2
		Calcium (Co)	8:1		9.5	5.6	0.75
	,	Į.	7.1		7.2	7.6	7.6
	Specific	conductonce (micromhos PH c	ħħ		9	88	ĸ
	Spe	Dissolved osygen ppm %Sat					
_		Eo.	- 8		94	64	8
		Dischorge Temp in cfs in 0F					
		ond time sompled P.S.T.	1962 10/2 0930	1963	1/9 0930	4/3	77.1 1500

b Laboratory pH.

c Sum of calcium and magnessum in epm.

Gravimetric determination.

Jum of Caclum and magnessium in Epin. It is a capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr. ¹⁶), reparted here as 0.0 except as shown.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves

Minneol analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Public Health Service (USPHS); San Bennardino County Flood Council District (SBCFCD); Metropolition Water District of Southern California (MAD); Los Angeless Department of Water and Power (LADMP); City of Los Angeles, Department of Public Health (LBDPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DMR); as indicated Annual median and range, respectively. Calculated from analyses of dupticate manthly samples made by California Department of Public Health, Division af Labarataires, or United Stores Public Health Service

CENTRAL VALLEY REGION (NO.

lyzed i

			Anoly: by i			USGS													
		-	os CoCO ₃ ity MPN/mi			Medlan 5.	Maximum 620.	Minimum 0.06											
		Tur-	- piq - t d II ppm			80	~	.7				7	6	5	5	-	-		
			000 S	∪ € Z d		m	Ci .			0.	0	-	0	0	a	0	9		
						04	53	17		28	16	52	8	77	81	23	01/		
		Per	and -			20	17	33		17	8	18	8	21	81	19	15		
		Toto	a solved solids	E OO LE		73 °	52 6	34.		51 °	32 °	44	38 .	33	. 52	04	62 t		
			Other constituents											PO, 0.00			AS 0.01 ABS 0.0		
			Silica	3 01C)										71			입	 	
		llion	Boron	9		0.1	0.0	0.0		0.0	0:0	0.0	0.0	0.0	0.0	0.0	0.0		
A. 22b	Dillie.	per mil	Fino-	(F)										0.0			0.1		
AMERICAN RIVER, MIDDLE FORK NEAR AUBURN (STA. 22b	ã 1	equivolents	- S	(NO ₃)										0.05			0.6		
WEAR AU	-	eduiv	Chio-	<u>(</u>)		6.0	2.2	3.0		3.0	2.8	3.4	0.03	1.0	1.1	1.8	4.0		
FORK	9		Sul -											0.05			6.0		
MIDDLE	constituents		Bicar-	(нсо³)		45	33	20		32	21	29	25	20	17 0.28	26	45		
RIVER,	Mineral cor		Corbon-	(500)		00.0	0.00	000		0.0	0.00	0.00	00.00	0.00	00.0	0.00	0.00		
WERICAN	Min		Potos-	(K)										0.4			0.03		
			Sodium	(0 N)		0.20	0.12	2.4		2.6	0.08	2.5	2.2	0.08	1.9	2.2	3.5		
			Mogne-	(Mg)										0.09			2.9		
			Calcium	(63)		0.80	0.38	0.340		0.55	0.33	0.49	0.40	4.0	0.36	0.420	0.55		
		_	E d	a.I.s		7.3	7:3	7.0		7.0	7.1	7.5	7.7	7.1	6.9	7.1	7.8		
		Specific	(micromhos at 250C)			100	71	Lt		70	777	19	25	39	35	55	66		
				%Sot		102	102	107		104	106	106	108	110	105	100	102		
			Oisso	mød		9.1	10.8	12.1		13.9	11.8	12.5	12.5	11.6	10.8	8.9	8.5		
			Te n			69	75	64		37	2	4.5	24	75	95	69	75		
			Dischorge Temp			43	084	2000		590	3500 (est)	736	2900	3670	3470	650 MD (eet)	100 MD (eet)		
		4	ond time	P.S.T.	1962	10/2	11/7	12/3	1963	1/14	2/7	3/18	4/16 1030	5/15	6/3	7/8 0945	9/12		

o Field pH

b Loboratory pH.

c Sum of colcium and magnesium in epm.

Jam of cocioum and inagensorm in april. It is a copper (Cu), lead (Pb), manganese (Un), sinc (Za), and heriovolent chromium (Cr¹⁵), reported here as 0.00 or 100 or 100

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

g Gravimetric determination.

h Annual median and range respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Services

except as shown

Mineral analyses made by United Stores Geological Survey, Quality of Water Branch (USGS), United Stores Department of the Interior, Bureau of Reclamation (USBR), United Stores Department of Material Stores Department of Stores Department of Stores (USBR), Stores Office Media LADPH), City of Long Beach, Department of Stores Department of Stores Department of Stores Department of Stores (USBR), Stores Office Media Laboratores, in CITLL, or California Department of Water Resources (USBR), so informed to the Stores (USBR), Stores Office Media Laboratores, Inc. (TILL, or California Department of Water Resources (USBR), so informed to the Stores (USBR).

ANALYSES OF SURFACE WATER ORIGIN (MO.5) CHICAN HIVER AT NIMHUD DAM (DUA, DOS.)

12

TABLE D-3

Dote ond time sampled P.S.T.

Politic bright, Dessain of Indigentials of Dated Stones Pality Health Septice.

Indigential Control of Rechamber (1988) and Dated Stones Pality Health Septice.

Indigential Stones of Line Stones (Septimental Date Pality Control of Septiment Stones (Septiment Septiment Septime

Anolyzed by i

USGS

				⋖													
				bid - Coliform h	Median	62.	Maximum >7000.	Min'mum 0.62									
				- P- C	of		Φ	m	5	04	8	15	C)	01	CV.	_	C)
				Hordness os CoCO ₃ Totol N C	17		_7	8	25	-	0	0	-	-3	-	C)	N
				Hordness os CoCO ₃ Totol N C	51		25	82	73	21	52	8	56	56	70	8	22
				Pod En	2		15	15	13	16	17	15	71	16	17	17	18
			Total	solids n ppg ni	85 6		39 е	13F	129	36 e	42 e	46 е	188	41 e	# 84 178	37 e	44 f
				Other constituents									AS 0.00 ABS 0.0				AS 0.01 ABS 0.0 POL 0.10
				Sific d			-1				_1		피	-1	- (-1	웨
			hion	Boron (B)	0.0	1	0:0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0:0	0.0
ER.			oar m	Fluo-									0.01				0.1
WAT	0	A. 22a)	ports per million equivalents par mil										0.0				0.00
RFACE	N (NO.5	DAM (S	Q Ninos	Chio- ride (CI)	188	0.51	0.05	0.82	98	3.4	3.0	1.5	0.00	0.05	3.2	0.00	0.03
JF SU	EY REOIC	NIMBUS	Ē	Sul - fote (SO _e)									0.03				2.6
SES (CENTRAL VALLEY REGION (NO.5)	IVER AT	stituant	Bicor- bonate (HCO ₃)	21	69.0	9.43	36.	88	24 00.39	30	34	30	27 0.44	98	24 0.39	0.39
ANALYSES OF SURFACE WATER	CENTH	AMERICAN RIVER AT NIMBUS	Mineral constituents	Corbon- ofs (CO ₃)	0	0.0	00.00	00.00	0.0	0.0	000	0.0	00.0	00.	00.0	000	000
		AM	M	Potos- sium (X)									0.0				0.03
				Sodrum (No)	4.0	0.17	0.09	6.1	5.1	0.08	2.4	2.4	0.09	0.10	0.10	0.00	0.10
				Mogne- sum (Mg)									0.13				0.16
				Calcium (Ca)		1.02	0.50	1.55	1.46	0.42	0.50	0.56	0.39	0.52	0.48	0.43	0.27
				I #10	7.1	7:3	7:1	7.7	7.0	7.1	7:7	7.1	7.3	6.8 7.4	6.9	7.0	7.5
				conductance (micramhos at 25°C)	967		R	196	181	51	65	69	₫	57	61	55	96
				gen %Sof	72		87	ま	95	109	76	%	901	107	%	8	91
				Dissolvs d oxygen ppm %Sol	0		0.6	6.6	11.4	12.5	11.0	10.8	п.3	11.5	7.6	8.7	8.5
				1.0 E	170		57	95	94	64	22	33	55	£	19	63	\$
				Dischorge Temp in cfs in 0F	1330	3	2930	5460	2450	7790	1770	5020	5410	8220	3330	3500	3010

1963

2/7 3/18 4/16

Laboratory pH. o Freld pH.

Sum of calcium and magnesium in epm.

Jum of Ediction and magnesium in typin. I lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Gr ¹⁶), reported here as $\frac{0.0}{0.00}$ except as shown frail point.

Derived from conductivity vs TDS curves.

Gravimetric determination.

Determined by addition of analyzed constituents.

Ministration analyses made by United Stores Geological Survey, Quality of Water Blanch (USGS), United Stores Department of the Interior. Bureau of Reclamation (USBR), United Stores Department of Man and Instituted Stores (USB-MS), Carly all Law Ampelian Water Default of Stores (USB-MS), Carly all Law Ampelian Water Default of Stores (USB-MS), Carly all Law Ampelian Water Resources (USB-MS), Stores (USB-MS), Terminal Personances, Inc. (ITLL), or California Department of Water Resources (USB-MS), Storing Carlos (USB-MS), Terminal Personances (USB-MS), Te h Annual major and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

13

5/15 0800 6/3 0720

CENTRAL VALLEY REGION (NO. 5)

(CC ATT) OTHER ATT CACDALOPHING (CT ATT)

г	_	_																	
		1	Anolyzed by 1			USGB													
		h	ity MPN/mt			Median 23.	Maxtaum 620.	Minimum 0.62											
		Tur-	ity ity In pom			70	10	-7		5	04	25	97	9	07	m	ı	0	
		-	000	E		0	٥,	C)		-3	7	-	7	0	0	0	0	C)	
		1	os Co	E dd		118	8	53		8	23	25	&	88	52	21	22	23	
		Par.	pod -			23	91	19		15	97	97	16	15	1.7	19	13	gg.	
		Toto	a spilos			37	38	41e		£4	38.	\$	\$64	12 F.	416	386	39¢	4ef 1768	
			Other constituents											AS 0.00 ABS 0.0 Pol, 0.05				AS 0.01 ABS 0.0	
		l	Silico (SiO ₉)	•										13				2	
	1	uoi	Boron S (B)			0.0	0.0	0.0		0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	
	million	per million	Fluo-	_										0.2				0.0	
A. 22)		equivolents	- trote	(NO3)										0.00				5.6	
TS) OIN	ă	equivo	Chlo-	(CI)		4.0	0.05	2.8		4.5	3.2	9.8	1.7	1.6	0.03	1.4	0.03	0.05	
AMERICAN RIVER AT SACRAMENTO (STA. 22	9		Sul -	(80%)										3.2				0.00	
EVER AT	atituante		Bicar-	(HCO ₃)		0.36	24	26		23 6.48	24	0.48	34 0.56	32 0.52	97.0	26	97.0	26	
RICAN R	Mineral constituents		orbon-	- 1		0.0	0.00	0.00		0.0	0.0	0.00	0.0	0.00	0.00	0.00	0.00	0.0	
AME	Min	Ī	Potas- Corbon-	(¥										0.5				0.0	
			Sodium (No)			2.6	0.08	2.6		2.3	0.08	0.11	2.6	2.4	01.0	2.2	0.10	2.4	
			Mogna-	(Mg)						-				0.50				0.16	
			Colcium (Co)			0.36	0.43	94.0		0.560	0.430	0.50	0.58	7.2	0.50	0.42	0.44	0.29	
			I z	ما		7.1	7.0	7.1		7.0	7.1	7.3	7.1	7.2	7.1	7.3	7.1	7.2	
		Spacific	(micromhos of 25°C)			25	7.	93		63	53	61	69	19	92	53	55	%	
			9	% Sot		93	88	16		36	103	ずる	 ಕ	97	102	93	93	18	
			Dissolved	€ mad		9.6	9.1	5.4		11.1	u.9	11.0	10.8	10.6	10.8	9.5	0.6	0.8	
			Ten or			19	57	55		45	6η	84	64	53	55	93,	63	29	
			Dischorgs Temp in cfs in oF							Not Rated									
			palduos palduos	P.S.T	1962	10/2	11/7	12/3	1963	1/14 0810	2/7 0915	3/8	1,/16	5/15 0700	6/3	7/8 0645	8/6 0745	9/12	

o Field pH.

b Loborotory pH

Sum of colcium and magnesium is opin. In one (Pb), manganess (Mn), zinc (Zn), and hovevelent chromium (Gr¹⁶), reported here as $\frac{0.0}{0.00}$ except as shown iron (R), and (Pb), manganess (Mn), zinc (Zn), and hovevelent chromium (Gr¹⁶), reported here as $\frac{0.0}{0.00}$ Sum of colerum and magnessum in apm

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents. Gravimatric determination.

Annual median and range, respectively. Calculated from analyses at dupticate menthly samples made by California Department of Public Health, Division of Leberareiras, or United Stores Public Health Service

Mineral analyses made by United States Goological Survey, Quality of Water Branch (USGS); United States Department of the Interior. Survey and Reademanton (USBR); United States Department of Water and Power (IL ADMP); City of Less Angeles Department of Water and Power (IL ADMP); City of Less Angeles Department of Water and Power (IL ADMP); City of Less Angeles Department of Water Resources (DWR); as indicated

14

ANALYSES OF SURFACE WATER

ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (NO. 5) TABLE D-3

March mission constraints expected by Catalythan University of Ways Proceedings and the Proceedings of Catalythan Catalyt

		Hordness bid - Coliform Analyzed as CoCO ₃ ify MPN/mi by i by from ppm ppm		uscs													
		Coliform's MPN/mi		Median 6.2	Maximum 7000.	Minimum 0.62											
	100	- Pra		9	CV.	2		М	6	C)	25	10	01	-7			
		N C O S		0	-	-2			0	0	0	0	٦	0	m		
		Hordness os CoCOs Totol N C		16	12	4.5		37	18	59	22	118	21	16	23		
		0 - Po		98	70	17		97	23	21	18	25	25	5/4	8		
	Total	solved solids in ppm		34.	40 _e	824		73e	8 000	57e	53e	42f	254	32e	1,00f		
		Other constituents										PO ₁₄ 0.00			AS 0.00 ABS 0.0		
		(Silico										17			21		
	lion	Boron (B)		0.1	0:0	0.0		0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.0		
22c)	million par million	Fluo- ride (F)										0.01			0.00		
S (STA.	ports per million equivalents per mil	frote (NO ₃)										0.0			0.0		
NEAR LOTUS (STA. 22c	o Ainba	Chlo- ride (CI)		0.13	2.5	2.3		5.0	2.6	4.2	0.03	1.5	0.0	1.8	3.2		
	<u>e</u>	Sut - fate (SO ₄)										0.05			0.05		
SOUTH F	constituents	Bicar - bonate (HCO ₃)		0.33	24 0.39	50		44	0.38	35	35	24	0.23	23	24 0.39		
AMERICAN RIVER, SOUTH FORK	Mineral con	Corban- ate (CO ₃)		0.00	0.0	00.00		000	0.00	0,00	0.00	0.0	0.00	0.0	00.00		
WERICAN	¥.	Potas- stum (X)									-	0.5			0.5		
,		Sodium (No)		0.11	0.13	4.2		3.6	2.6	3.5	0.12	2.8	0.08	2.4	0.12		
		Magne- sium (Mg)										0.14			2.3		
		Colcium (Co)		0,32	0.42	268.0		97.0	0.36	0.58	0.549	4.2	0.24	0.32	5.6		
		T dio		7.2	7.3	7.3		7.1	7.1	7.3	7.1	7.3	7.2	7.1	7.3		
	Spacific	(micromhos of 25°C)		71.77	25	106		\$	64	73	88	84	92	45	775		
		% Sof		102	106	101		103	106	106	100	108	101	8	104		
		Dissolved osygen ppm %Sof		7.6	11.2	11.3		14.2	11.3	12.4	11.5	11.0	10.9	9.3	8.9		
				63	75	64		35	- 23	91	L4	57	54	63	22		
		Discharge Temp		381	257	988		148	1620	091	2790	2120	3510	799	195		
		ond time sompled P.S.T.	1962	10/2	11/7	12/3	1963	1/14	2/7	3/18	4/16	5/15	6/3	1/8	9/12		

o Freld pH.

Laboratory pH

Sum of calcium and magnesium in spm.

Iron (Fe), olumnum (AI), arsance (As), copper (Cu), lead (Pb), manganese (An), zinc (Zn), and hexavalent chromium (Cr.*6), reported here as 0.0 except as shown Iron (Fe), olumnum (AI), arsance (As), copper (Cu), lead (Pb), manganese (An), zinc (Zn), and hexavalent chromium (AI), arsance (AII), arsance (AIII), arsance (AII), arsance (AII), arsance (AII), arsance (AII),

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

Annual median and arguments of calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United Stores Public Health Service
Mineral analyses made by United Stores Coological Survey, Chapting of Mate Branch (1955); United Stores Board (1955); United Stores Social Survey, Chapting of Material Stores (1954); Son Bernardina Chapting County Flood
Control District (1954); Perminal Testing Laboratories, Stored Colling on Department of Mater and Power (LADMP); City of Long Beach, Department of Public Material Laboratories, The City of Long Beach, Department of Mater Resources (DMR); as indicated.

ANALYSES OF SURFACE WATER

CENTRAL VALLEY REGION (NO. 5)

ANTELOPE CREEK NEAR MOUTH (STA. 88c)

Г	_	70														
		Anolyzed by i	USGS													
		bid - Caliform ity MPN/mi														
	1	- piq - pid - bid		30	5	5		C)	5	-	-7	C	10	10	9	15
		Hordnass os CoCOs		ς.	0	0		0	0	0	0	=	in	~	0	2
		Hordness os CoCOs Tatol N.C.		16	100	11		63	36	70	897	117	5,4	99	107	10
		ing and		33	87	23		23	22	8	21	S	98	30	23	9
	Totol	solids solids named ul										92°F				154°
		Other constituents										101, 0.00			Tot. alk. 134	ABS 0.00
		Silico (SiO _E)										- - 131			-	9
	L O	Boron Si (B) (S		7.0	0:0	0.0		0.0	0.2	0.0	1.0	0.0	0.2	 [:]	9*0	4.0
1	equivotants par million	Fluo- ride (F)		01	01	01		01	01	01		0.0	01	01	91	1.000
1	votants par mil	Ni- trate (NO ₃)										0.02				500
77	equivo	Chio- ride (Ci)		27.0 0.76	2.6 0.27	6.8		8.5	8.8	0.23	4.4 0.12	6.2	0.20	0.37	8.2	0.18
	5	Sul - fote (SO ₄)										0.0				13.0 0.27
Ologon I	constituents	Bicor - bonote (HCO ₅)		10 <u>T</u>	134	100		87	50 0.82	91	01.1	1.05	1.02	75	126	1.39
TO LOT TO THE WAY TO THE PARTY OF THE PARTY	Minerol cons	Corbon- ote (CO ₃)		00.00	0.00	0.00		0.00	00.00	00*00	0.00	00.00	00.0	00.00	0.13	00.0
	Mins	Potos- Rium (X)										0.03				0.09 0.09
		Sodium (No)		16.0	13 0.57	0.10		8.7	0.20	0.40	5.0	6.1	8.8	13 0.57	15	0.05
		Mogne- sium (Mg)										5.8				8.5 070
		Colcium (Co)		1.82	5.00	1.43		1.25	0.73	F	0	2.6	1.00	1.32	2.14	0.70 0.70
		P. a		7.8	7.8	2 2		7:7	2.7	7.8	2.0	7.6	7.5	7.5	00 M	9.1
	Decific	(micrambas at 25°C)		287	241	177		168	96	177	1.22	120	155	197	289	215
-		man year		82	88	95		93	100	104	8	100	ま	3	88	26
		Diss os mdd		7.8	8,8	10.9		11.3	10.6	1:11	10.1	9.6	8.6	8.2	J. 6	£.
-	_	e E		59.	09	164		45 1	55	55	57 1	63	67	70	73	89
		Dischorge Temp in efs in of Eut. by		50	10	t-		2	70	(7)	15	15	8	50	CI	21
		ond time sompled	1962	1001	11/1	12/10	1963	1/4	2/4	3/1	1,320	5/3	6/5	7/8	8/5 0940	9/12 1130

Sum of colcium and magnesium in epm.

ANALYSES OF SURFACE WATER

b Labaratory pH.

from (Fo.), aluminan (A), presence (As), copper (Cu), lead (Pb), monganese (Mn), zinc (Zn), and hexavolent chramium (Cr. ¹⁰), reported here as $\frac{0.0}{0.00}$ except as shown.

Determined by addition of analyzed constituents. Derived from canductivity vs TDS curvas

Gravimetric determination.

Minard analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Oppartment of the Interior, Bureau of Reclamation (USBR); United States Popular California (USBR); States of Survey, California (USBR); California (USBR); States of Survey, California (USBR); California (USBR); California (USBR); California Department of Popular Many Reseauces, (USBR); as indicated. h. Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Leboratories, or United Stotes Public Health, Service.

TABLE D-3
ANALYSES OF SURFACE WATER

Martent material control towns tanded and the control of the contr

INALYSES OF SURFACE WATER
CENTRAL VALLEY REGION (NO. 5)
TWELOPE CHEEK WEAR HEN RIJHFF (STA. 188.)

		Anoiyzed by i	USGE									<u> </u>				
-		4 e e	Ď													
		bid - Coliform														
	725	- pid - pid - pid		-	^	9.0 (1		`	Ν	~	7	n	
		N N N		-				5	0			0	9	-	=	-
-				19	5			5	27	7,	~	31	ψ,	ĥ	32	ŭ.
-	- 0	De E		30	53	15		ş	23	ű	23	1 22	-;	*	5)	in tu
-	Toto	solids in ppm										705				116"
		Other constituente										POl ₄				PO _{1, CUCIO} As O. A. ABS O. CO
		(Silico										8.4				প্র
	llion	Boron (B)		6.0	0.7	위		9	릙	3	1	-	্ৰ	7	7	리
a line	Der 3	Fluo- ride (F)										0.0				0.0
corts per million	equivolents per million	trote (NO _S)										0.5				8.00
2 1077	equivo	Chio-		7. 6.34	7.H 0.22	0.12		0.83	1.2	6.6	3.0	20.0 10.0	0.12	61.0	8.0	0.22 0.22
	<u>e</u>	Sul - fote (SO ₄)										0.00				70.0
Con the state of t	efituente	Bicor- bonote (HCO _S)		1.51	87	63		69	11 gr. 10	1:4	M3.	17.0	1.36	1:3	1.3	1.34
	Mineral constituents	Corbon -		00.0	0,00	20.0		00.00	91.70	100.	00.0	00.0	191	00.0	00.0	8.0
2	Min	Potos- (X)										0.02				0.04
		Sodium (No)		12 0.52	111	7.3		0.35	7	6.1	12:0	01.10	2.5	0.57	2.4	0.44
		Mogne- sium (Mg)										3.9				6.9
		Colcium (Co)		1.23	1.18	1.82		16:0	3.0	13.0	0.11	0.30	12.	1.0	F.	0.55
		PH a/b		3.8	1.2	- E		710	7.2	排	110	7.4	11:	1	100	: Ir.
	Specific	(micromhos ot 25°C)		168	162	110		126	69	116	88	80	101	135	147	154
		pen (s		8	100	100		103	100	1.13	1	101	102	108	107	112
		Dissolved oxygen ppm %Sol		9.5	10.3	11.8		12.6	11.0	11.7	10.9	10.4	9.6	9.5	0.6	100.1
				9	28	7-7-		3	52	95	53	57	59	7.4	92	69
		Dischorge Temp		700	177	36		2	200	81.0	175	170	85	1.4	177	14
		ond time compled P.S.T.	12.6.6	10/1	17/11	12/7	1,43	115.1	21	3/1	1235	5/3	6/5	2/-	8/8 1205	9/12

o Field pH

b Loborotory pH.

b Loborotory pH.

Jum of colcum and magnessurin in spin. It is copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavolent chromium (Cr¹⁶), reported here as $\frac{0.0}{0.00}$ except as shown. Sum of colcium and magnesium in epm.

Derived from conductivity vs TDS curves

f Determined by addition of analyzed constituents.

f Determined by addition of a generalization.

Annul metian and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Lobororans, or United Stores Public Health Service.

Mineral analyses made by United Stores Geological Survey, Capacity of Water Branch (1955), United Stores Propertment of Interiors, Survey Capacity, United Stores Public Health Service (USPHS), Son Bernarder Capacity of Long Beach, Department of Mater and Power (LADMP), City of Long Beach, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); The City of Long Beach, Department of Public Health (LADPH); The City of Long Beach, Department of National Page 1988.

CENTRAL VALLEY REGION (NO. 5)

		Anolyzed by i	USGE						_								
	£	bid - Coliform ity MPN/mi														-	
	Tor	- piq - th - kdd u		10		77		01	0		m	4	н	-	9	М	
		PP C		5	c	0		C	0	0	0	0	D	c	IRI	٥	
				75	25	45		677	53	14.8	517	37	275	51	37	95	
	Per-	- poe		27	25	772		52	23	23	23	22	8	23	₹	23	
	Totol	solved in ppm										86 ^f 82 ^g				119 [£] 115 [©]	
		Other constituents										POl ₁ 0.05				PO _{1, 0.10} As 0.00 ABS 0.00	
		Silico (SiO ₂)										37				3,	
	lion	Boran (B)		0.2	0	0:0		0	0.0		0.0	0.0	10.1	0:0	0.2	0.0	
P)	million	Fluo- rids (F)										0.0				0.0	
STA. 88b)	ports per million equivalents per million	rrofe (NO _S)										0.05				0.0	
) GOOMIG	Povinge	Chlo- rids (CI)		2.8	0.03	0.0		0.10	0.03	3.6	2.1	2.0	0.03	0.05	1.5	0.50	
AR COLLIC	Ë	Sul - fote (SO ₄)										0.0				0.05	
REEK NE	constituents	Bicar- bonate (HCO ₃)		32 1.51	1.33	72 1.18		76 1.25	0.70	1.23	71.16	26.0 0.92	68	79	83 1.36	87	
BATTLE CHEEK NEAR COLLONWOOD (STA.	Minerol cor	Corbon- ote (CO ₃)		00:00	0.00	00.0		0,00	0000	0.00	00.00	00.00	0.00	0.00	0.00	00.00	
	Min	Potos- Sium (K)										0.04				0.05	
		Sodium (No)		9.6	7.8	6.6		0.32	3.9	6.6	6.3	0.25	5.6	0.31	0.32	7.8	
		Magne- sium (Mg)										4.6				0.62	
		Calcium (Ca)		1.15	1.000	06.0		.98	95.0	8.0	0.90	7.2	0.83°	1.02	1.04	0.50	
		π e		8.5	7.5	7.8		7.8	7.6	7.5	7.4	7.9	8.0	8	9.6	7 · 6 8 · 2	
	Specific	conductance (micromhos of 25°C)		152	135	118		128	111	124	118	ġ,	104	130	137	146	
		lvsd (i		1174	100	101		98	66	108	8	%	105	103	104	98	
		Dissolvs d osygen ppm %Sot		11.2	10.4	11.4		11.7	11.1	12.7	9.01	10.1	10.1	9.7	10.0	7·6	
				62 1	57	50 1		46	51 1	4.7	53 1	55 1	63 1	69	63	09	
		Dischorge Temp		217	277	380		355	1,060	398	1470	066	510	322	235	300	
		ond time compled P.S.T.	1962	10/1	11/1	12/7	1963	1/4	2/4	3/4	14/5	5/3 0740	6/5	7/12	8/2	9/12	

a Field pH.

18

ANALYSES OF SURFACE, WATER ORIGINAL VALARY HISTON (NO. 5)
HEART INTER HEART (NYA. 1781)

b Laboratory pH.

Sum of calcium and magnesium in epm.

Sum of calcium and magnessum in opm.

Iron (Fe), oluminum (AI), arsening (As), capper (Cu), lead (Pb), manganasa (Mn), zine (Zn), and hexavalent chromium (Cr⁺⁶), reported hara as $\frac{0.0}{0.00}$ except as shawn.

Datemined by addition of onolyzed constituents. Derived from conductivity vs TDS curves.

g Gravimetric determination.

h Annual madian and range, respectively. Calculated from analyses of duplicate nanthly samples made by California Department of Public Health, Division of Laboratories, at United States Public Health Service Outside States Geological Survey, Califord Manach (USS), third States Department of Internative (SECPO), Memopalian West political States Geological Survey, Califord (WMD), Las Anagles, Department of Water (LDMP), Charles of Survey (LDMP), Survey (LDMP), Charles Survey (LDMP), Charles Survey, California (WMD), Las Anagles, Department of Water (LDMP), Charles Survey, California Department of Water Resources (DWR), as indicated.

Formation and A (1997) For the formation of the formation

CENTRAL VALLEY REGION (NO. 5)

BEAR RIVER NEAR MOUTH (STA. 20b)

													-			 	
		Analyzad by i			USGS						DWR						
		bid - Celiform s ify MPN/mi															
	,	piq -				4	55		15	20	8	0,4	S	25			
		000	6			00	σ0		4	9	2	m	5	2			
			000			太	2		L4	36	92	77	41	51			
		- P				16	14		17	25	31	97	15	8			
	Total	solids solids				978	78 €		16 e	, 29	1146	71 e	65 f 65 g	85 °			
		Other constituents									Zn 0,00		PO. 0.00				
		Sitic a											17				
	million	1 5				0.0	0.0		0.0	0.0	0.02	0.0	0.0	0.0			
	per mil	1.0											0.0				
	aquivolents per millien		\neg										0.05				
	o vinge	Chie-	(CI)			4.8	0.11		4.8	0.11	5.2	4.2	3.5	0.25			
	<u>e</u>	Sul -	(80%)										7.0				
	constituents	Bicor benate	(HCO ₃)			56.0	51,000		52 0.85	37	1.28	50	0.72	56 0.92			
	Mineral con	Carbon	(CO _S)			00.0	900		0.0	0.00	0.00	0.00	0.0	0,00			
	ž	Potos-	£				_				0.0		0.0				
		Sodium (NO)				0.21	3.9		0.19	0.30	0.70	3.8	3.5	5.9			
		Mogne	(Mg)										9.4				
		Calcium (Ca)	_			1.08°	1.01		0.94	0.71	1.5%	0.88	8.8	1.02		 	
		E c	10			7.5	7.3		7.6	7.0	8.3	7.1	7.3	7.7			
		conductones pH (micromhos at 25°C)				131	121		118	96	178	011	%	132	Study Station Discontinued 6/30/6		
	25	D C > 0	%Sat		Ç	91	97		26	74	8	8	001	101	ntlu		
		Diss	шоо			6.8	10.9		12.4	8.1	11.0	10.1	10.6	8.8	n Dieco		
		Temp in OF			poled	29	51		39	53	64	67	55	72	statio		
		Dischorge Temp			Not Sampled	140 est.	300 eet.								Study 2		
		ond time belgnes	P.S.T	1962	10/1	11/11 0905	12/3	1963	1/2 0920	2/5 0900	3/5	14/2 0830	5/9	6/3			

b Loboretory pH

Jun at calculum and magnesium in typin. It is copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Ci⁺⁶), reparted here as 0.0 except as shown. Iron (Fe), alumnum (Al), arrenic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Ci⁺⁶), reparted here as 0.0 except as shown. Sum of calcium and magnesium in epm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

h Annual median and range, respectively. Calculored from analyses of duplicate monthly samples made by California Department of Public Health, Division at Leberatories, or United States Public Health Service.

Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS), United States Department of the Interior, Bureau af Reclamation (USBR), United States Public Health Service (USPHS), Son Benovatino Caunty Flood Control States of Southern California (MOD); Las Angeless Department of Water Resources (DMR); City of Los Angeles, Department of Public Health (LBDPH); Terminal Testing Lebaratories, Inc. (TIL); or California Department of Water Resources (DMR); as indicated

CENTRAL VALLEY REGION (NO. 5)

			Anolyzed by i			SSS													
		4	oe CoCO ₃ ity MPN/mi			Median 6.2	Maximum 620.	Minimum 0.62											
ĺ		Tur-	- bid -			15	80	70		9	8	15	2	10	7	CU	CV .	0	
			0000	O E		59	9	9		9	5	13	-3	00	-3	118	23	6	
				ľ I		152	45	17		8	88	17	37	12	94	106	112	77	
		Per	e od -			я	16	15		13	50	12	15	1,4	7.7	#	#	য	
		Total	penios	Edd u		210	9 ог	63 e		59 e	45 e	104€	₂ 96 °	9 <u>89</u>	70°°	147	147°	109 ^c	
			Other rentstants											AS 0.00 ABS 0.0 PO4 0.00				AS 0.01 ABS 0.0 POL 0.15	
			Silico	(SiO ₂)										13				1,4	
	_	roi	Boron	<u>e</u>		0:0	0.0	0.0		0.0	0.0	0.0	0:0	0.1	0.1	0.0	0.0	0:0	
	m:Hior	per million	Fluo-											0.1				0.0	
(STA. 78)	ě	equivolents p	N +											0.0				6.6	
AND (ST	۵	eduiv	Chlo-	(i)		15	3.0	4.4		0.08	0.11	4.7	2.8	3.5	3.2	0.21	3.0	5.8	
WHEAT	9		Sul -	- 1										8.4				13	
BEAR RIVER NEAR WHEATLAND (STA. 78)	tetituent		Bicar	(HCO3)		2.46	77.0	4.3 0.70		39	28	1.16	99.0	69.0	51 0.84	107	109	83 1.36	
	Mineral constituents		Carbon	(00)		0.00	0.00	0.00		00.0	0.00	0.00	0.00	0.0	0.00	0.0	0.00	00.0	
	Ä		Potos-	(K										0.0				0.8	
			Sodium	(0 N)		8.6	3.8	3.2		2.8	3.2	0.20	3.0	3.3	3.5	0.20	6.1	4.8	
			Mogne-	(Mg)										4.4				0.94	
			Colcium	(62)		3.05°	9.90	0.82°		0.77	0.57°	1.43	0.74c	9.6	0.91	2.12	2.240	20.00	
			Į.	ماه		6.6	7:3	7.3		7.1	7.2	7.5	7.1	7.3	7.5	8.0	7.5	7.6	
		Specific	(micromhos			332	111	100		93	11	164	89	95	110	232	232	175	
Ī			D C	%Sot		82	103	66		97	101	100	102	103	102	109	76	110	
			Dissolved	mdd		9.2	9.8	17.11		12.6	11.5	11.5	11.9	10.8	8.8	8.7	6.7	9.3	
Ì			Temp in OF			19	79	51		9	25	64	97	96	73	18	79	75	
			Dischorge Temp in cfs in oF			3.6	214	4010		592	1560	211	1170	0001	711	77	ล	33	
		-	and time	P.S.T.	7961	10/1	11/1	12/3	1963	1/9	2/5	3/5 0915	4/2 0915	5/9	6/3	7/9	8/6	9/13	

b Lobaratory pH.

Jum of colcum and magnessum in epin. If the colcum of the Sum of colcium and magnesium in epm.

Derived from canductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination.

Mineral analyses made by United Stores Geological Survey, Ouality of Water Branch (USCS); United Stores Department of the Interior, Survey and Recommendation of Stores Department of the Interior of Stores (USDPI); City of Las Angeles, Department of Public Medit (LADPI); City of Las Angeles, Department of Public Medit (LADPI); City of Las Angeles, Department of Public Medit (LADPI); City of Las Angeles, Department of Public Medit (LADPI); Terminal Terminal Section Department of Stores (LADPI); Terminal Terminal Section Department of Water Resources (DNR); Section Section Department of Water Resources (DNR); Section Section Department of Water Resources (DNR); Section Sec Annual median and range, respectively. Colculated from analyses of duplicate monthly samples made by Colifornia Ospatment of Public Health, Division of Lobaratories, or United States Public Health Services

CHENTRAL WALLING INCOLUN (1907)

BLG CHICO CHENK AT CHECK (1907, 1917)

PART PROTECTION

ANALYSES OF SURFACE WATER

A Amenia maters and ristory, executively Calculated from manufactors and advances control to gallering because the following the control of t

CENTRAL VALLEY REGION (No. 5)

BIG CHICO CREEK AT CHICO (STA. 85a)

			Analyzad by i	nsgs														
		-	as CaCO ₃ Ity MPN/mi Tatol N C PPm															
		100	- Add r		1,5	50	00		٦	00	C/I	្ន	-7	160	~1	CU	-	
			Tatol N C		10	0			٥	0	0	0		-		CU	0	
		1	Tatol PPM		57	39	35		79	1,8	99	31	97	09	67	%	2	
		Par	- pos		50	23	50		98	12	22	19	13	70	98	25	5	
		Total dis-	solived sod -										95 ^f 87 ^g				145f 1428	
			Other constituents										PO _{1, 0.00}			Tot. alk. 102	PO _{1, 0, 20} As	
			Silico (SiO ₂)										77				8	
		lion	Baran (B)		0.2	0.0	0.0		0.0	0.1	ं	0.0	0:0	0.2	0.1	0.2	0.2	
	P. III o	E Ja	Fluo- ride (F)										0.00				0.1	
A. 85a	parts per million	lente	Ni- trate (NO ₃)										0.00				0.5	
BIG CHICO CREEK AT CHICO (STA. 85a)	ă	equivalente per million	Chia- ride (C!)		5.2	3.5	1.8		9.8	3.2	8.1	0.5	1.8	6.0	8.2	10	0.28	
	5	. [Sul - fate (SO ₄)										0.0				- 18 - 10 - 10	
	ef i frante		Bicar- bonate (HCO ₃)		64	50	50.82		1.49	11.11	1.38	142 0.69	1.05	1.38	100	1.54	1.08	
	Mineral constituents	,	Corban- ore (CO ₃)		00.00	00.00	00.0		0.00	00.00	00.0	0.00	0.00	0.00	00.00	0.13	S	
	Mine		Patas- sum (K)										0.0				0.03	
			Sadium (Na)		6.7	5.2	3.9		10	6.0	8.0	3.5	5.4	8.8	11 0.48	0.57	114	
			Magns- sium (Mg)										5.0				0.03	
			Calcium (Ca)		1.14	0.75	0.70		1.28	18.0	1.21	0.63	0.55	1.190	1.340	1.71	0.80	
					7:5	7.7			7.5	7.7	8.1	7.7	7:0	8 2	8.1	7.8	0 kg	_
		Specific	conductance (micramhas at 25°C)		120	97	87		168	122	156	1/2	,1114	151	183	197	205	
		-	yed (r		93	76	8		8	102	106	102	96	×	110	119	110	_
		i	Dissalved asygen ppm %Sat		6.6	10.7	11.2		13.8	11.0	11.9	11.4	7.6	7.8	9.3	9.6	4.6	_
1		_	0 e e		55	52	20		35	25	51	20	63	7	75	8	7.	
			in cfs in of		ま	ま	216		21	55	57	944	87	777	16	6	co	
			sompled P.S.T.	1962	10/17	11/27	12/19	1963	1/16	2/19	3/19	1500	5/14	6/3	7/8	8/6	9/10	

Labaratory pH.

Jum of colcum and magnessym in epm. Iron (Fe), aluminum (Al), arceic (As), capper (Cu), lead (Pb), manganese (Un), zinc (Zn), and hexavalent chromium (Cr*⁶), reported here as <u>0.0</u> 0.00 Sum of calcium and magnessum in epm.

Derived from canductivity vs TDS curves.

Determined by addition of analyzed constituents. Gravimetric determination.

except as shawn.

ANALYSES OF SURFACE WATER

CENTRAL VALLEY REGION (NO. 5)

		Analyzed by i	T	nsos													
		bid - Coliform Analyzed			Median 23.	Maximum 2,400.	Minimim So.	-									
	1	piq -	1		35	01	5-		-	-1	-1	07	Н			C1	rd
Ī		N CO.	Edd		>	0	2		С	0	٥	⊃	0	٥	10	0	0
		Hardr 08 Co	E dd		146	011	32		ĝ	45	59	30	94	59	1.9	80	14
	ď.	poe -			27	23	10		%	22	53	27	50	S	%	98	8)
	Total	solved solids in ppm											93 ⁴				147f 1436
		Other constituents											PO4, 0.00			Tot. alk. 102	PO _{1, 0.00} As 0.00 ABS 0.00
		Silico (SiO ₂)	1										쑀				84
	lon	Boron (B)			0.1	0.0	0.0		0.1	0.0	0.0	0.0	0.0	7.7	C	0.2	0.1
	million per mil	Fluo- ride											0.0				0000
STA. 85)	ports per million equivalents per million	- in frote	8										0.3				0.02
CHICO (Paguiy	Chlo- ride			0.11	3.2	0.05		9.4	3.2	7.4	0.4	0.12	0.16	0.23	0.28	0,28
BIG CHICO CREEK NEAR CHICO (STA.	u s	Sul - fate	- 1										0.08				0.10
	constituents	Bicar - bonata			0.95	54 0.09	45 0.74		86	63	81 1.33	42	63 1.03	84 1.38	1.59	1.61	1.75
	Mineral col	Corban-			0.00	00.0	0070		00.0	00.0	00.00	00.00	0.00	00.0	00.0	0.07	00.00
	Min	Potas- sium											0.0				6.00
		Sodium (No)			0.34	5.5	3.5		9.9	5.7	9.0	2.9	5.6	0.33	1.1 0.48	13	0.61
		Mogne- sium											5.1				0.63
		Calcium (Ca)			0.92	0.80	0.64°		1.23	06.00	1.17	19:0	0.50	1.18	1.340	19:1	0.80
		E &	3		7.5	7.5	112		7.9	7.8	7.c	7.4	7.5	7.7	88.7	1-100	 8
	Soucific	(micramhos pH at 25°C)			114	101	18		165	114	149	72	111	150	178	195	500
		ygen ygen	200		102	104	103		101	104	102	103	101	100	102	101	100
		Dies			11.0	11.4	11.2		13.7	11.5	11.8	11.7	10.1	9.8	9.1	9.8	9.5
		Temp in op-	1		54	55	53		37	52	897	64	59	19	70	472	19
		Osschorge Temp			160	550	066		72	160	93	1,040	149	89	148	34	8
		ond time sompled		1,762	10/17	11/27	12/18	1963	1/16 0850	2/19	3/19	1640	5/14	0060	1,78	8/6	9/11 0840

c Sum of calcium and magnesium in epm. b Laboratory pH.

Jum of Calcium and magnetium in Epin. It is copper (Cu), lood (Pb), manganese (Mn), zinc (Zn), and hexavalent chramium (Cr. ¹⁶), reported here as $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

i Mineral analyses made by United States Geological Survey, Duality of Water Branch (USGS), United States Department of the Interior, Bureau of Reclamation (USBR), United States Geological Survey, Duality of Water Branch (USPR), Las Angeles Department of Water and Power (LADMP), City of Las Angeles, Department of Public Health (LADPH); City of Lang Beach, Department of Water Resources (DWR), as indicated. Amusl meston and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

ANALYSES OF SURFACE. WATER

Account making comparized Catalonia flow analysis of a complete anal

CENTRAL VALLEY REGION (NO. 5)

BUTTE CREEK NEAR CHICO (STA. 84)

_	_																_
		Anolyzed by 1	USGS														
	-	Hordnass bid - Coliform Analyzed os CoCO ₃ 11y MPN/mi by 1 Total N C. Ppm Ppm		Median 18.	Maximum 2,4n0.	Minimum 2											
	Tur-	- piq		Dt	7	Ī.		2	-	Ç.,	ē	7	L .	-	-		
		N COS		~	3	=			-	8	0	Ī	-)	î	-	1	
		1. 1		É	F	뀾		3	34	39	27	22	34	7	20	14	
	Par-	sod -		n _	ž.	11		⁵ l	ñ	77	16	52	15	17	15	13	
	Total	spilos spilos mdd ui										56 ¹ 528				75f 706	
		Other constituents										PO400				POL 0.00 As 0.00 ABS 0.00	
		Silico (SiO ₂)										2				12	
	llion	Boron (B)		0.3	0:0	0:0		0.0	0.0	0.0	0.0	0.0	0.1	0.0	0:0	0.0	
millio	per million	Fluo- ride (F)										0.00				0.0	
ports per million		N:- trote (NO ₃)										0.0				0.0	
	equivolents	Chio- ride (Ci)		0.03	0.04	0.0		0.07	0.03	0.00	0.0	0.04	0.0	0.03	0.03	0.03	
	2	Sul - fots (SO ₄)										0.0				0.0	
	stifuents	Bicar- banate (HCO ₃)		44 0.72	1,7 0.77	44		0.85	46	52	36	38	45.0	58	1.05	65 1.07	
	Mineral constituents	Corbon- Ote (CO ₃)		000	0.00	00.00		00.00	00.00	00.00	00.0	00.00	00.00	00.00	00.00	00.00	
1	Min	Potas- (K)										0.5				0.0	
		Sodium (No)		2.7	2.6	1.8		3.1	0.11	0.13	2.2	0.10	0.12	3.8	3.8	3.3	
		Mogna- sium (Mg)										0.25				0.34	
L		Colcium (Co)		0.78	0.776	0.64		0.81	69.0	9.78	0.53	0.35	89*0	0.82°	1:00	0.60	
L		F &		1:4	7.5	1		7.	31:	7.8	7.7	75	7.5	200	3.5	7-5-	
	Soncific	(micromhos of 25°C)		82	718	1/2		16	79	88	63	69	73	96	101	104	
				100	76	76		76	101	102	98	66	76	101	103	8	
		Disso osy osy		10.9	11.0	10.7		12.9	11.4	12.0	11.4	10.4	10.2	4.6	9.1	9.8	
		Temp in OF		53	20	55		38	50	24	74	55	55	99	17	09	
		Orschorge Temp		1470	0617	1,260		500	637	335	1,750	777	86	502	164	146	
		Dote ond time sompled P.S.T.	1962	10/17	11/27	12/18	1,963	1/15	2/19	3/19	4/16	5/14	00800	7/8	8/6	9/11	

o Field pH

Loboratory pH.

Sum of colcium and magnissum in spin.

Iron (Fe), oluminum (Al), orsenic (As), copper (Cu), lead (PS), manganese (Mn), zinc (Zn), and hexavalent chramium (Ci +6), reported here as $\frac{0.0}{0.00}$ except as shown. c Sum of colcium and magnesium in epm.

Detamined by addition of analyzed constituents. Derived from conductivity vs TDS curves.

h Annual median and ronge, respectively. Calculated from analyses of duplicate manthly samples made by Californio Department of Public Health, Division of Laboratories, or United States Public Health Service. Gravimetric determination.

Market District (SBCFD); Manapolison Warer District of Southern Childran (WMD); Los Angeles Department of the Interior, Bureau at Reclamation (USBR); United States Coological Survey, Quality of Water District of Southern Children (WMD); Los Angeles Department of Water and Power (LADWP); City of Las Angeles, Department of Water District of Southern Children (WMD); Los Angeles, Department of Water Department of Water District of Southern Children Department of Water Resources (DWR); as indicated.

ANALYSES OF SURFACE WATER

CENTRAL VALLEY REGION (NO. 5)

		Anolyzed by i			USGS					c								
		Hordness bid - Coliform Analyzed os CoCOs In John MPN/ml by 1			Median 23.	Maximum 7000.	Minimum 1.3											
		- P- C			m	-	01		CV.	150	m	15	CI.	01	٥.	91	7	
		000 o	Totol N.C. ppm ppm		0	16	٦	,	~	н	9	0	6	0	0	0	0	
		Hora Pod	Totol		175	257	210		544	154	560	128	257	184	156	155	152	
		cent cod			R.	37	37		36	88	53	19	56	52	23	23	8	
		- spilos	Edd u		562°	425e	345 e		108 e	224 €	388 e	170 e	375 f 362 g	253 e	212 e	207 e	221 g	
		and the state of t	\neg										AS 0.00 ABS 0.0				AS 0.00 ABS 0.0 PO ₄ 0.25	
		Silico	(SiO ₂)										83				21	
		5	<u>@</u>		1.2	3.1	3.9		2.6	1.0	1.5	8.0	1.4	1.4	1:1	1.1	1.0	
	million	-on	(F)										0.3				0.0	
	ports per		(NO ₃)										0.05				0.10	
CACHE CREEK NEAR CAPAY (STA. 80)	ă	Chia-	(CI)		34,0.96	2.88	1.95		2.26	27.0	56 1.58	10	1.13	26 0.73	20	16	16	
	Ē	Sul -	(SO ₄)										0.87				7.4	
	Mineral constituents	Bicar	(HCO ₃)		236 3.87	250	3.95		270	3.06	290	169	302	3.69	3.38	3.21	3.21	
	neral cor	Corbon-	(600)		000	0.73	0.23		0.37	0.00	0.33	0.0	0.0	0.20	0.0	0.0	00.0	
	ž	Potos-	(X)										2.4				2.2	
		,			37	2.96	56		64 2.78	28	2.09	14	41	28	21 0.91	19	118 0.78	
		Magne-	(Mg)										3.13				$\frac{21}{1.73}$	
		Calcium	(Ca)		3.49	5.14 0	4.21		1.88°	3.08	5.20 0	2.56	2.00	3.68	3.12	3.10	26	
		¥.	ماه		8.3	8.3	8.8		8.0	8.0	3.5	8.1	8.1	8.1	8.0	8.2	8.0	
		Specific conductance (micromhos	U 252 IB		472	765	621		733	403	269	305	630	455	381	372	367	
		P ue	%Sot		76	66	101		96	76	101	%	φ	%	105	36	8	
		Dissolved	шод		9.0	9.5	10.5		17.4	10.2	11.3	10.8	9.3	9.5	9.3	4.9	8.0	
		Temp in of			99	63	96		94	55	8	51	3	69	02	73	72	
		Dischorge Temp			77	L17	285		105	895	540	0011	361	214	379	310	592	
		Dote ond time	P.S.T.	1962	10/1	11/11	12/4	1963	1/3	2/6	3/4	4/1	5/8	6/3 0815	7/8	8/5	9/11	

o Field pH.

b Laboratory pH.

c. Sum of calcum and magnessum in Epm.
d. Iren (Fe), outsmit (As), orsence (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavolent chromium (Ci ¹³), reparted here as \$\frac{0}{0}\$ except as shown. c Sum of calcium and magnesium in epm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service. Grovimetric determination.

Mineol onlyses made by United Stotes Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Survey of Reclamation (USBR); United States Public Headth LapPHS; Son Beneatine County Flood County Flood Ostrict (SBCFCD), Metropolium Water District of Southern California (WND); Los Angeles Department of Water and Power (LADMP); City of Los Angeles, Department of Public Headth (LADPH); City of Long Beach, Department of Public Headth (LADPH); City of Long Beach, Department of Public Headth (LADPH); City of Long Beach, Department of Public Headth (LADPH); Termon Testing Loboratories, Inc. (TIL); or California Department of Water Resources (DWR); as indicated.

ANALYSES OF SURFACE WATER CERPITAL VALUEY HENDER (1970) (9)

ANALYSES OF SURFACE WATER

CACHR CREEK NEAR LOWER LAKE (STA. 42) CENTRAL VALLEY REGION (NO. 5)

	_	_															
			Anolyzed by i		nsgs												
		-	s ity MPN/mi		Median 19.	Maximum 77000.	Minimum 1.3										
		Tur	- pid -		15	10	6		25	20	9	15	2	15	15	15	Ø
			Total N.C.		0	0	0		C/	0	٦	0	0	0	0	0	0
					141	102	116		120	109	96	128	132	125	127	124	131
		Per	P 0 8		27	19	8		19	19	118	16	16	17	16	16	15
		Total	solids med ei		181	132°	154 е		158 °	141 9	127 c	163 °	178 f 179 e	158 e	154 €	158 °	185 15
			Other constituents										AS 0.01 ABS 0.0 POu 0.20				AS 0.00 ABS 0.0
			(SiOg)										16				25
ı	_	million	Baron (B)		1.0	0.6	0.7		9.0	0.8	7.0	1.0	6.0	1.0	0.9	0.8	0.9
	Ē	Der m	Fluo- ride (F)										0.3				0.0
TA. 42)	80	equivolents	Ni- trofe (NO ₃)										0.03				0.13
LAKE (S	-	equiv	Chlo- ride (CI)		0.23	5.5	9.7		0.31	6.8	4.8	7.2	6.0	6.4	9.4	6.2	6.6
LOWER			Sul - fate (SO ₄)										12 0.25				0.16
EK NEAR	000000000000000000000000000000000000000		Bicar- bonate (HCO ₃)		3.25	2.10	2.31		2.36	139 2.28	116	2.84	173 2.84	2.79	162 2,66	2.79	2.75 2.75
CACHE CREEK NEAR LOWER LAKE (STA. 42)	Mineral con		Corban- (CO ₉)		0.0	00.0	00.0		0.0	0.0	0.00	0.0	000	00.00	000	0.00	000
	ž		Potas- svum (K)										2.1				4.50
			Sodium (No)		1.04	0.48	0.57		13	0.52	9.8	0.48	0.52	0.52	0.48	0.48	0.48
			Magne- sum (Mg)										11 1.34				15
			Calcium (Co)		2.82	2.04	2.32 °		2.40	2.18	1.92	2.56 %	1.30	2.50	2.54	2.48	28
			I dio		8.1	7.5	7.5		7.4	7:5	3.5	7.7	7.7	7.9	7.8	8.5	7.7
		Spacific	(micromhos of 25°C)		327	238	27.7		285	554	229	293	293	284	278	782	762
					97	82	95		96	101	106	95	93	97	102	%	76
			wao wao		8.5	8.0	10.1		11.0	10.3	10.9	10.2	9.3	9.6	8.7	7.7	7.9
		,	0 E		8	65	52		54	55	75	9	57	19	7.1	77	15
			In cis in of		54	2.7	2.8		2.5	9.9,	7.5	2890	4.8	302	326	862	O45
			ond time sompled P.S.T	1962	10/1	17\n 12%	17/21	1963	1/3	2/6	3/4	4/1	5/8	6/3	7/8 1155	8/5	9/11

a Freld pH

b Laboratory pH.

Sum of calcium and magnesium in apm.

Jum of colculum and magnessum in them.

Iron (Fe), oluminum (Al), reported here as \$\frac{0.0}{0.00}\$, respited here as \$\frac{0.0}{0.00}\$.

Determined by addition of onalyzed constituents. Derived from conductivity vs TDS curves.

Grovimetric determination.

h Annual median and range respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Dealth William States Geological Survey, Joulat of Water Branch (USCS), United States Geological Survey, Joulating March States Geological Survey, Joulating Water Branch (USCS), United States Dealth William (William States Geological Survey, States Geological States

CENTRAL VALLEY REGION (NO. 5)

		Analyzed by 1																
		4 L																
		bid - Coliform																
		- p- 0			97	7	Q		Q.	25	-	27	α	-	-	a	72	
		Hordness se CoCO ₃	Totol N.C. ppm ppm		m	60	0		0	0	0	0	0	0	0	6	12	
					188	229	123		191	104	162	93	160	184	197	197	210	
	- 6	100 m			34	었	65		27	8	16	15	16	19	77	52	77.	
	Total	solved solids	F 00 ci		307°	358 e	188 e		242°	142e	211e	107°	210 ^f 201 ^g	236 e	271 e	273°	302 f	
		Other constituents											PO ₄ 0.05				AS 0.01 ABS 0.0 PO ₄ 0.05	
		Silico	(SiO ₈)										13				8	
	lion		<u>e</u>		3.9	5.2	2.3		7.4	0.7	1:1	0.4	6.0	1.6	2.3	8.8	3.2	
. 79)	er mil	Fluo-											0.0				0.0	
UCB (STA	equivalents per million	- Z	$\overline{}$										0.0				0.0	
NEAR LOWER LAKE (STA. 79)	o duive	Chlo-	(3)		1.78 1.78	1.97	25 0.71		9.79	9.5	17 0.48	0.12	12 0.34	0.56	34	1.30	51 1.44	
	ē	Sul -	(80,										0.23				16	
TTH FORK	stituents	Bicor-	(HCO ₃)		3.70	245	163 2.67		3.33	144 2.36	3.15	107	3.23	3.49	3.72	203	3.44	
CACHE CREEK, NORTH FORK	Mineral constituents	Corbon-	(CO3)		0.0	0.40 0.40	00.0		8	0.0	10	000	5	0.37	10	13	0.33	
ACHE CF	ž	Potos-	(x)										0.03		_		0.04	
		Sodium			44 1.91	2.13	23		1.22	13	1.6 0.78	6.8	14 0.61	% 0.67	28	30	31 1.35	
		Magne-	(6M)										1,85				30	
		Colcium	(02)		3.77°	4.58°	5.46 €		3.34 ℃	2.08 ℃	3.24	1.66°	27	3.68°	3.940	3.94	35	
		Ę	മുമ		8.3	88.5	7.9		8.0 8.3	8.2	8.1 8.5	7.7	98.0	8.1	8.5	8.5	8.1	_
	Chaeidle	conductance (micromhos			542	631	331		426	250	372	188	350	416	84.49	184	27.5	
		p	%Sot		121	119	105		102	001	104	8:	101	93	125	113	111	
		Diesolved	E Ød		10.7	11.3	10.7		11.8	10.2	11.6	11.2	10.3	7.6	10.6	9.5	9.5	
					33	8	99		94	26	64	84	56	54	72	92	17	
		Dischorge Temp in cfe in oF			1.6	56	185		72	294	108	878	165	11	50	8.8	9.4	
		Dote ond time	P.S.T.	1962	10/1	11/11	175/4	1963	1/3	2/6	3/4	1100	5/8 1015	6/3	7/8 1045	8/5	9/11	

b Labarotory pH.

Sum of colcium and magnessum in epm.

Jum of colcum and magnesium in epm. Iron (Fe), aluminum (Al), control (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Ci *5), reparted here as $\frac{0.0}{0.00}$ except as shown

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Grovimetric determination.

Mineral analyses made by United States Geological Survey, Quality of Water Broach (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Public Health Survice (USPHS); San Benardina County Fload Chemical States of Southern California Gallonia (States Opportunity). Las Analyses, Department of Public Health, City of Las Angeles,, Department of Public Health, City of Lang Broach, Department of Mare Resources (UPR); as indicated Laborations, and County County (LADPH); Terminal California Department of Mare Resources (UPR); as indicated Laborations, the County County (LADPH); Terminal California Department of Mare Resources (UPR); as indicated the County (UPR). Amusl median and range, respectively. Calculated from analyses of duplicate monthly samples made by Caldonia Department of Public Health, Division of Laboratories, or United States Public Health Series.

DE BEGUNNE DIEDUM LINNINGY DEGUNNE (DEA. 110m) ANALYSES OF SURFACE WATER CHAIRM (NO. 5)

ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (NO. 5) TABLE D-3

CACHE SLOUGH BELOW LINDSEY SLOUGH (STA. 110a)

_								
		Anolyzed by i		USBR				
	4	Hordness bid - Coliform Analyzed os CaCO ₃ IIY MPN/mi by i Total N C ppm ppm						
	Tur-	- pid Atl						
		Hordness os CoCO ₃ Total N C ppm						
		Hord Totol ppm						
	à	E BOB		35		35	52	7.2
	Total	solids in ppm		208		160	172	156
		Other constituents						
		Silico (SiO ₂)						
	lion	Boron Silico (B) (SiO ₂)						
millian	ber mil	Fluo- ride (F)			_			
ports per million	equivalents per million	rrote (NO ₃)						
۵	equive	Chia- ride (CI)		18		16	괴	п
	e e	Sul - fate (SO ₄)						
	atriuent	Bicar- bonate (HCO ₃)						
	Mineral constituents in	Potos- Carbon- E sium ote (K) (CO ₃)						
	Min	Potos- sum (K)						
		Sodiun (No)		17		18	77	हा
		Mogne- sium (Mg)						
		Calcium (Ca)						
		I						
1	Specific	Dissolved conductonce pH oxygen (micromhos pH oxygen ox 25°C)		216		788	241	130
		Dissolvsd oxygen ppm %Sat						
-		Disse						
-		e o		79		94	99	43
		Deschorge Temp in cfs in aF						
		Date and time sampled P.S.T	1962	10/15	1963	1/14	1120	1045
	-							

o Field pH

b Labaratory pH

Sun of ectivina and magnesium in Epm.

Lond (Pb), manganese (Mn), zine (Zn), and (Pb), manganese (Mn), zine (Zn), and hexavolent chromium (Ci⁺⁵), reparted here as 0 0 except as shown.

Iron (Fe), aluminum (Al), arsenine (As), copper (Cu), lead (Pb), manganese (Mn), zine (Zn), and hexavolent chromium (Ci⁺⁵), reparted here as 0 0 except as shown. Sum of calcium and magnesium in epm.

Determined by addition of analyzed constituents.

Derived from conductivity vs TDS curves.

Gravimetric determination.

h Amuel median and range, respectively. Calculated from analyses of duplicate manthly samples made by Caldonia Opportment of Public Health, Division of Laboratories, or United States Public Health Service.

Sound Division (USBR), United States Geological Survey, Quality of Water Bonech (USS), United States Demonstrated States Public Health Service (USPHS), Son Bennadra Canalo Division (USBR), United States Public Health Service (USPHS), Son Bennadra States Canalo Division (USBR), United States Public Health (LADPH), Son Bennadra States Canalo Division (USBR), United States Public Health (LADPH), City of Long Bench, Department of Water Resources (DWR), as indicated.

Public Health (LBDH), Terminal Pesting Laboratoria, Inc. (TIL), and Caldonia Opportunisation Water Resources (DWR), as indicated.

27

ANALYSES OF SURFACE WATER

CENTRAL VALLEY REGION (NO. 5)

	Analyzed by 1			USGS													
,	de CaCO ₃ ity MPN/mi			Median 9.5	Maximum 2400.	Minimum 0.62											
T	- pag				٦	-		٦	52		3	m	m	9	00	-3	
	aco ₃	D E			23	27		21	00	7	-	2	٦	m	m	m	
					155	152		136	12	119	92	85	76	8	89	101	
	0 0				77	15		7,	71	15	13	را 8 ع	13	ង	7	11 12	
Total	Bolved Bolids	100 rl			218e	209°		190e	73 е	169e	101	121	105e	109 ^e	119 ^e	142	
	of the state of th											PO _{1,} 0.05				AS 0.00 ABS 0.0	
	Silica	(3 0)S										21				8	
ion	۱ ۾	ê			0.0	0.1		0.0	0.1	0.0	0.1	0.1	0.0	0:0	0.0	0.0	
million ler mil	Fluo-	(F)										0.1				000	
parts per million valents per mil	ı.	(NO ₃)										0.00				0.02	
aquivalents per million	Chlo-	(i)			16	16		12 0.34	0.11	9.3	2.9	4.5	4.4	4.4	0.11	6.0	
Ē	-	(\$0\$)										12 0.25				1 ¹⁴ 0.29	
trituents	Bicor-	(HCO3)			161	152		140 2.29	53 0.87	136	84 1.38	94 1.54	91	1.54	105	1.97	
Mineral conetituents	ar bon –	(CO ₃)			00.0	00.00		00.0	00	000	0.0	0.0	00.0	000	0.0	0,0	
Mine	Potos- C	E(X)										1.5				0.00	
	Sodium	(N 0)			12 0.52	12 0.52		10	3.7	9.8	5.1	5.4	5.2	5.0	5.4	6.1	
		(Mg)										7.2				8.3	
	Calcium	(Ca)			3.11	3.03		2.720	1.02	2.38°	1.53°	21 1.05	1.52	1.60	1.78c	27	
	ī	ala o			7.5	7.3		7.4	7.5	7.5	7.3	8.2	7.4	7.5	7.7	8.0	
	conductance (micromhos	01 25 0			354	343		309	119	274	164	181	173	178	194	214	
	p ue	%Sot			986	22		%	103	16	66	66	8	100	8	95	
	Dissolved	Edd		- Dry	8.5	7.7		10.8	10.8	9.3	10.2	4.6	9.6	9.6	8.9	8.3	
				Sampled -	9	25		25	55	57	57	₫	8	63	69	72	
	Discharge Temp			Not Sam	37	3.2		0.2	5260	ជ	5η3	87	121	208	208	172	
	Dats and time	P.S.T.	1962	10/2	11/13	12/6 1045	1963	1/8	2/4	3/11	1100	5/6	6/4	7/10	8/5 0845	9/11	

a Field pH.

Loboratory pH.

Sum of colcium and magnessum in apm.

Iran (Fe), aluminum (AI), argenic (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr⁺⁶), reported here as $\frac{0.0}{0.00}$ except as shown. Sum of colcium and magnesium in apm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

Minead analyses made by United States Geological Survey, Chality of Water Branch (USSS), United States Cological Survey, Chality of Water States (USPHS); San Bernadina County Flood
Control District State (States of States of Sta

ANALYSES OF SURFACE WATER CONTROL VALLET REDIGION (No.5)

ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (NO.5) TABLE D-3

			Anolyzed by 1			υ													1
			Anol			USGS													
			Hordness bid Coliform of CoCO ₃ ity MPN/mi			Median 230.	Maximum)7000.	Mioimum 2.3											
		707	- A - L							00	9		85	8	5		15	15	
			dness CoCO ₃	Totol N.C. ppm ppm						18	5		.1	10	н		٦	CV.	
			P P	Tofo PPM						130	7-7		74	92	8		83	8	
	_	-	solids cod -	E						19	15		e 15	f 13	15		13	4 8 4 8	1
		101	P A S	<u>e</u>					_	195e	71 е		- 7.L	FE	a 92		119°	137	_
			Other constituents											AS 0.00 ABS 0.0 PO ₄ 0.05				AS 0.00 ABS 0.0	
			Silico	(3 O(c)										77				큄	
	_	Hion	Baron	9						0.0	0.1		0.1	0.0	0.0		0.0	0.0	
	OI III	per million	Fluo-	(F)										0.2				0.0	
. 16b)	ports per million	equivolents	1 2 2	(NO3)										0.03				0.03	
ON (BIA	۵	equiv	Chio-	(CI)						12	2.5		0.04	3.9	0.12		0.11	0.15	
STOCKI		=	Sul -	1										0.23				0.25	
VER NEAF		BTITUENT	Brcar-	(HCO ₃)						2.23	51		53	94	86.		1.64	118	
CALAVERAS RIVER NEAR STOCKTON (STA. 16b)	1	100 1018	Corbon-	(CO)						0.0	0.0		0.0	0.0	0.0		0.0	8	
CALAV	, and		Potas-	(K)										1.4				0.07	
			Sodium	(0)						11 0.48	3.8		3.6	6.0	0.18		5.5	6.1 0.27	
			Mogns-	(Mg)										7.8				0.68	
			Calcium	(00)						2.60	0.940		0.940	1.00	1.00		1.66	1.30	
			I a	مراه						8.0	7.3		7.3	7.9	7.1		7.8	7.8	
		Specific	(micromhos pH							30₫	m		911	186	118		186	550	
Ì			P = 5	%Sof		, cro	Dry	, cro		120	100	ory.	91	102	8	ampled	101	त्रा	
			Dissolved	E dd		Drry	1	Dry		14.6	10.5	<u>G</u>	9.5	0.6	8.0	Not Sample	9.6	9.5	
			Temp in OF			npled	upled	mpled		4.5	56	apled	59	11	22		75	75	
			Discharge Temp			Not Sampled	Not Sampled	Not Sampled		Ponded	2590	Not Sampled	878	775	5.0	Ponded	59	83	
			ond time	P.S.T.	1962	10/2	11/13	12/5	1963	1/8	2/4	3/1	1,78	5/6	6/4	7/10	8/5	9/11	

a Field pH

Laboratory pH

c Sum of calcium and magnesium in epm.

Sum of catcum and magnessure in spin.

In (Fe), aluminum (A1), asset (As), capper (Cu), lead (Pb), manganese (Min), zinc (Zn), and hexovolent chromium (Gr⁺⁶), reparted here as $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Grovimetric determination.

Annul median and range respectively. Calculated from analyses of duplicate monthly samples made by Caldumia Department of Public Health, Division at Laboratories, or United States Paulic Health Service.

Mineral many seas made by United States Goological Survey, Quality of Water Branch (USSS), United States Cological Survey, Quality of Water Branch (USSS), Branch States Paulic Median (USSS), Los Angeles, Department of Mater Caldumian (USSS), Los Angeles, Department of Mater Caldumian and Power (LADMP), City of Los Angeles, Department of Public Median (LADPH), City of Loss Branch States (USSS), Teach of States (USSS), Cological Department of Mater Resources (DMR), as indicated.

CENTRAL VALLEY REGION (No. 5)

,																		
		Analyzed by i		USGS														
		Hordness bid - Califormh as CaCO ₃ ity MPN/ml																
		- pid - bid - bid			=-1	£	÷		i)	15	-7	٥	_		-	^	**	
		200 N	mdd		00	2	-		<u></u>		27		0	-1	-1	0	-	
		Hord 08 Co	mdd mdd		-	3	\$		117	50	2,	R	ž	31	36	3	27	
ĺ		sod -			34	8	13		%	8	81	₹		53	87	1.3	7	
	Total	solved solved solins											1,1 °				62 ¹ 58 ⁶	
		Other constituents											PO1, U-02				ABS 0.00 As 0.01	
		Silica (SiO ₂)	+										5					
	19	5			5	77	0.0		0.0	āl	0 0	0.1	3	0.0	0.0	립	9	-
	r million	F tua-	-										0.0				1.0	
124)	ports per million	- in	$\overline{}$										0.0				00.00	
O (STA.	ports pe	Chia-	3		0.50	0.28	4.8		6.7	2.8	0.14	20.0	20.0	2.10	= 10	2.2	9.5	
NEAR IC	_	Sul -	(304)										90.0				0.05	
CLEAR CHEEK NEAR ICO (STA. 124)	constituents	Bicar-	(HCO3)		1.02	100	41 0.07		165.0 0.0	0.57	10.0	0.50	19.7	37	07.0	0.85	50 0.82	
CLEA	Mineral can	Corban	(503)		00.00	00.00	00.00		0.00	00.00	00.0	00.0	00.0	00.0	00.0	00.00	00*6	
	Min	Potos-	Ē.										7:0				0.03	
		Sodium (No)			0.75	5.3	0.2		0.28	0.15	4.0	0.18	4.4	0.16	77.0	5.7	2.5 0.11	
		Mogns	(Mag)										0.13				H-10	
		Colcium			197	1.12	0.716		0.81	10,0	39.0	0.58	7.4	0.61	0.73	0.84 P. C.	95.0	
		Ĭ.	a/b		7.4	7.5			7.7	7:7		7:5	7:7	7.7	3/2	7.7	10	
		Specific conductance (micramhas of 25°C)			192	149	66		111	80	68	3/2	1/8	81	89	3	53	
		9	% Sat		91	101	103		8	102	103	907	102	104	100	105	105	
			E dd		9*8	70.5	11.9		12.2	11.7	12.3	11.5	10.4	10.4	9.6	3.9	6.6	
		Temp in of			59	57	148		44	14.9	917	R	57	65	3	150	49	
		Discharge Temp in cfs in of			35	96	270		151	996	280	1,710	120	122	£, 77	33	1,380	
		Date ond time	23.5.	1962	10/2	11/2	12/7	1903	1/4	2/11 0915	3/4	4/4	5/3	6/5	7/12	8/2	9/12	

ANALYSES OF SURINCE WATER

b Lobaratory pH.

Sum of calcium and magnessum in spin.

Iran (Fe), aluminum (Al), arsairic (As), cappor (Cu), load (Pb), manganese (Mn), zinc (Zn), and hazavolent chramium (Cr¹⁶), reparted hare as 0.00 except as shawn. c Sum of calcium and magnessum in epm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

h Annuel medion and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service

Mineral analyses made by United States Goological Survey, Quality of Water Branch (USCS); United States Oppartment of the Interest. Survey and Every Country of Water of States Angeles, Water Object Markey States Public Health (LADPH); City of Los Angeles, Department of Water Object Markey States of States and Power (LADPH); City of Los Angeles, Department of Robert, Department of Water Resources (DWR); as indicated

- Marchell March States of States and States of States of States and States of States

CIPAR LAKE AT LAKERORE (STA &1) CENTRAL VALLEY REGION (NO. 5)

			Anolyzed by i			USGS													
			ds CoCO ₃ 11y MPN/mi			Median 5.	Maximum 7000.	Minimum 0.13		-									
		- 10	- Pid -			8	25	15		8	25	35	10	30	15	35	-4	8	
		-	့် ပို	υ Æ B B B B		CV .	0	0		0	0	0	0	0	0	0	0	0	
		1	98 0	Tatal N C		143	129	127		126	115	115	112	110	112	118	125	127	
1		-10	- 5			93	17	17		17	17	16	16	15	16	16	16	14	
		1010	solios	E 00 c		177°	167°	166°		165°	151 e	150 €	148 °	148 f	145°	147 c	156°	1777 f 185 &	
			Other constituents											AS 0.01 ABS 0.0 POL 0.05				AS 0.02 ABS 0.0 PO4 0.75	
		ľ	Siliea	200								-		16				23	
		LOI	Boron	9		0.1	1.0	9.0		6.0	0.7	9.0	0.7	9.0	9.0	7.0	0.8	0.8	
	millian	ie l	Fluo-											0.2				0.01	
41)	parts per millian	squivalents per million	- Ni-											1.8				2.7	
CLEAR LAKE AT LAKEPORT (STA. 41)	od	Bquiva	Chlo-	(C)		0.23	6.2	8.4		6.5	7.6	5.5	5.8	4.4	5.6	7.6	5.5	6.4	
LAKEPOR	e .		Sul -											8.0				8.2	
AKE AT	atituen!		Bicor -	(HCO ₃)		2.82	2.82	2.77		2.75	2.43	2.43	151	2.38	2.33	2.49	2.43	168	
CLEAR I	Mineral constituents			(00)		000	0.0	0.00		0.0	0.00	4 0.13	0.00	00.00	0.20	0.0	0.20	0.00	
	Min		Potos-	(¥)										1.6				2.3	
			Sodium	10 111		14 0.61	25.0	25.0 0.52		25.0	0.48	10	9.6	9.0	10	07.44	0.48	10	
			Magne-	(Mg)										1.15				1,19	
			Coleium	60		2.86 °	2.58%	2.55 °		2.52	2.31 °	2.30	2.2t	21	2.24	2.35	2.50	1.35	
			된 ·	مراه		7.7	8.0	7.5		7.3	7.5	7.6	7.7	8.2	7.9	8.1	8.3	7.5	
		Specifie	(micromhos pH			308	291	589		287	262	261	258	239	253	255	27.1	589	
			9	%Sot		184	25	92		72	ž	95	%	104	85	95	777	157	
			Oisso	Edd		14.7	9.4	7.8		8.2	9.6	9.6	10.1	10.9	7.4	7.8	8.7	12.4	
		_	E 0 1			77	98	75		24	55	96	54	95	69	74	82	82	
			Dischorge Temp in efs in of																
		9000	ond time	P.S.T.	1962	10/1	11/1	12/4	1963	1/3	2/6	3/4 1330	4/1 1315	5/8 1330	6/3	7/8	8/5	9/11	

o Field pH

b Labaratory pH.

c Sum of calcium and magnesium in epm.

Jun of calcium and magnesium in them. I lead (Pb), manganese (Un), zinc (Zn), and havarolent chromium (Gr¹⁶), reported here as 0.0 except as shown iron (Fe), aluminum (Al), arrented here as 0.00 except as shown.

Derivad from conductivity vs TDS curves

Determined by addition of analyzed constituents. Gravimetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate manthly samples, made by Calculated by Department of Public Health, Division of Laborataries, or United States Geological Survey, Cololity of Water Branch (USCS), United States Geological Survey, Cololity of Water Branch (USCS), United States Geological Survey, Cololity of Water Branch (USCS), United States Geological Survey, Cololity of Water Branch States Geological Survey, Cololity of Water States Geological States (WS), Les Angeles, Department of Water Chamber of Water States (WS), as inclinated of Public Manager of Public Meadol Manager (USC), and Calculation Department of Mean Resources (UMR), as inclinated.

ANALYSES OF SURFACE WATER

CENTRAL VALLEY REGION (NO. 5)

	_																	
		Analyzed by 1		SBSA														
		Hordnass bid Coliform os CoCO3 Ity MPN/mi			Median 210.	Maximum /,000.	Mininum n.2											
		- page			85	C.	300		5	80	₩. B	230	20	80	35	69	8	
		000	mdd		00	7.7	12		78	0	56	m	7	q	c	0	2	
		Hordr os Co	mdd mdd		172	182	146		362	206	366	141	116	120	131	162	134	
	,	1 - B			2	53	57	_	19	55	53	64	911	22	89 47	43	74	
	Total	solved solids											271 ^f 273 ^g				266f 2548	
		Other constituents									Tot. alk. 378		PO ₄ 0.25				POl, 0.20 As 0.00 ABS 0.00	
		Silica (SiO ₂)	1										77				17	
	lo l				0.3	7	7		 	2.0	7	0.2	2,0	5.0	0.2	0.2	0.2	
	r million per million	Fluor	5										70.0				0.3	
STA. 87	ports per	lrota trota	(SOM)										3.6				0.02	
OLUSA (a viola	Chlo-	100		1.35	2.79	1.38		234	<u>72</u> 2.03	3.36	36°0	0.71	26 0.73	26	0.71	20	
I MEAR C	ë	Sut - fate	- 1			3.87	2.31		334 6.95	3.27	6.15	89 1	71.48	71,48	27.		37	
COLUSA TROUGH NEAR COLUSA (STA. 87)	nstituent	Bicor - banate	6000		3.28	329	164		346 5.67	252	351	168	2.25	176 2.88	3.26	3,62	3.29	
COLUSA	Mineral constituents	Corbon -	6031		00.00	0.00	00.00		00.00	00,0	113	00.00	00.0	0.00	0.00	0.00	0.00	
	Ā	Potos-	(u)										0.05				0.04	
		Sodium (No)			3.65	150 6.52	3.92		260 11.31	5.00	192 8.35	62 2.70	2.04	2.57	25.44	25.11	7.00	
		Mogne- srum	in a										1.17				$\frac{17}{1.38}$	
		Colcium (Co)			3.45	5.68	2.91		121).	1.12	7.320	2.82	23	2.40	2.62	3.24	26	
		£ <	a/p		7.5	8.2	25.		8 8 2	7.8	0000	110	7.6.	1.8	7.18	8	7.5	
	Soucific	(micromhos ot 25°C)			692	1,130	96		1,850	906	1,460	247	1440	495	488	511	444	
		gen .	1000/		73	16	78		101	85	101	82	93	88	85	75	88	
		Dissolved			7.7	9.6	8.3		13.1	8,7	10.8	8.5	4.8	8.1	7.5	7.0	7.7	
			1		95	45	55		70	28	55	2.5	69	89	73	18	72	
		Dischorge Temp in cfs in of			NO	154	1,174		160	191	108	1,347	729	1,185	652	634	1,400	
		ond time sompled		17,62	10/17	11/27	12/18	10/3	1/15	2/19	3/19	1130	5/14	6/3	7/8	8/6	9/10	

o Field pH

b Loborotory pH.

Sun or carbon management (sty, copper (Cu), load (Pb), manganase (Mn), zinc (Zn), and haxorelant chromium (Ci *6), reported hare as $\frac{0.0}{0.00}$ except as shown or the contract of the cont c Sum of colcium and magnesium in apm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimatric determination.

Annual median and range, respectively. Colculated from analyses of duplicate manufly samples made by California Dopartment of Public Health, Division of Laboratories, or United States Public Health Service.

Mineacl analyses made by United States Goological Survey, Duality of Water Broach (USGS), United States Department of the Interior, Bureau of Reclamation (USBR), United States Policit Houlit Service (USPHS), San Barnardina Childran (WW). Les Analysis Superment of Water and Present LADMP), City of Los Angeles, Department of Public Health (LADMP), City of Long Beach, Department of Public Health (LADMP), City of Long Beach, Department of Public Health (LADMP), City of Long Beach, Department of Public Health (LADMP), City of Long Beach, Department of Public Health (LADMP), City of Long Beach, Department of Management of Public Health (LADMP), City of Long Beach, Department of Management of Public Health (LADMP), City of Long Beach, Department of Management of Manage

ANALYSES OF STREET, WATER
CHEETING VALUES USED IN (1977)
CHEETING CHEETING

ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (NO. 5) TABLE 0-3

Section 1 Section 2 Control of the Control of the Control of Contr

CONTRA COSTA CANAL AT FIRST PUMP LIFT (STA. 1098)

٢	_	· ·															\neg
		Anolyzed by 1		USBR													
		bid - Coliform Ity MPN/mi															
	Turk	- piq															
		Hordnass es CoCO ₃ r															
-		100		74	97	12		2	83	94	64	93	39	82	43	4	\dashv
	Total	solved o side		252	725	1,00		924	1999	764	961	328	140	192	560	228	
		Other constituents															
		Sinco (SiO ₂)															
5	million	80.0m (8)							0.71						0.15		
Billie	per m	Flue- rids (F)															
corts per million	aquivolants	trate (NOs)		1.2	1.9	1.2		3.7	9.3	1.9	1.9	1.2	0,0	0:0	0.0	9.0	
6	4 000	Chio- rids (Ci)		8	82	114		527	151	116	116	19	92	53	541	4.5	
	e ÷	Sul - fata (504)		77.77	92	22		011	177	113	108	92	12	<u>E</u>	37	37	
	constituents	Bicar- bonate (HCO ₃)		8	108	115		106	011	101	115	81	44	72	%1	81	
	Mineral col	Corbon- cre (CO _S)		0:0	0.0	0.0		0:0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0.0	
	¥	Potos- sium (K)		2.0	2.3	2.3		2.3	3.9	3.8	3.5	2.3	1.6	2.0	3.1	2.3	
		Sedium (No)		77.7	55	12		87	106	85	833	94	17	8	35	36	
		Magne- sium (Mg)		13	19	82		8	30	8	칭	21	7.0	9.6	13	14	
		Calcium (Ca)		8	72	20		37	8	었	34	81	피	15	17	16	
		É		7.5	7.5	7.6		7.5	7.7	8.1	7.6	7.8	7.7	7.3	80.2	7.6	
	Specific	conductonce (micromhos of 25°C)		904	595	4 L9		916	1020	194	782	1,28	203	281	362	364	
		Dissolved osygen (
-		1		3	65	75		39	26	65	99	179	22	P 2	75	\$	
		Orschorgs Temp															
		Dote and time sompled P.S.T.	1962	10/17	11/14 1115	12/17	1963	1/16	2/11	3/11	4/8 1010	5/13	6/10 0940	7/15	8/12	9/23	
-																	

o Field pH.

b Laboratory pH.

c. Sum at colculum and magnessions in eym. d (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Gr⁴⁵), reported hare as 0.0 e. d Iron (Fe), elumnum (AI), orsenic (As), cepper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Gr⁴⁵), reported hare as 0.0 e. c Sum of colcium and magnesium in epm.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves

g Grovimatric detarminotion.

i Minaral analyses made by United States Geological Suvery, Quality of Water Branch (USGS); United States Department of the Interior, Sureau of Reclamation (USBR); United States Public Health Service (USPHS), San Benardino County Flood Connel District (SBCFCD); Metropolitan Water District of Southern California (WMD); Las Angeles Department of Maier and Power (LADMP); City of Las Angeles, Department of Public Health (LBDPH); City of Language States (USBCFCD); Metropolitan Water States (U Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Poblic Health, Division of Loboratories, or United Starts Public Health Service

except os shown.

32505-0-4 6-61 200 GPO

CENTRAL VALLEY REGION (NO. 5)

	_																		
			bid - Coliform Analyzad			USGS													
			Coliform MPN/ml			Median 23.	Maximum 620.	Minimum 2.3								`			
		Tur-	Pid-	1			7/	80		10	700	æ	9	6	15	m			
			Hordness as CaCO ₃	ppm ppm			0	0		0	0	0	0	0	0	0			
							75	LA		75	31	24	34	23	18	35			
		Per	sod -				18	18		16	22	15	18	21	2.1	20			
		Total	solved spilos	m oo n			100 0	87 e		96	9	83 e	o 49	51 f	45 e	e 59			
													-	AS 0.00 ABS 0.0					
			Silica	(2015)										19			-		
		lon	Boron	(B)			0.0	0.1		0.0	0.0	0.0	0.0	0.0	0.1	0.0			
	million.	per mi	F100-	(F)										0.0					
A. 9ha)	parts per million	equivolents per million	ż	(NO3)										0.00					
WILL (ST		viupa	Chlo-	(E)			2.8	4.6		4.0	1.8	3.5	2.6	0.05	0.03	2.2			
T Mc CON			Sul											2.0					
RIVER A	9	uan i na	- Bicar-	(HCO ₃)			69	0.95		67	39	58	42	32 0.52	32	46			
COSUMMES RIVER AT MCCONNELL (STA. 94a)	Minorol on		Corbon	(CO3)			0.00	0 0		0.0	0.00	00.00	0.00	00.00	00.00	00.00			
8	7		Polds-	3										0.03					
			Sadium	(0 2)			5.3	0.21		02.0	3.8	0.17	3.4	0.13	3.0	3.9			
			Magne-	(Mg)										2.1					
			Calcium Magne-	02			1.08 c	0.95 c		1.00	0.62 c	0.94 0	⇒ 69°0	6.0	0.35 c	0.70 c			
			I a	210			7.4	7.8		7.4	7.3	7.4	7.1	7.3	7.1	7.5			
		Specific	(micromhos pH				134	116		128	90	111	85	65	09	87			
			0 c	% Sat			105	66		106	16	106	100	104	100	108			
			Dissolved	mdd		Dry	10.5	11.2		13.7	10.6	10.9	10.9	10.0	0.6	9.6	Dry		
						-	3	95		04	53	65	53	63	69	81 8			
			Ciscolorge 16mp			Not Sumpled	16	74		62	1100	212	3060	11180	590	70	Not Sampled		
			ond time	P S d	1962	10/2	11/8	12/6	1963	1/14	2/7	3/12	1,400	5/15	1325	1/8	1,420		

b Loboratory pH

c. Sum of colcium and magnesium in opm.

June 10 to continuous and the second of the

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves

Gravimetric determination

excapt os shown.

h Annual madran and range, respectively. Calculated from analyses of duplicate manthly samples made by Calcinnia Department of Public Health, Division of Laboratories, or United Strates Public Health Service.

Mannet analyses made by United Strates Geological Survey, Chalify of Marte Branch (USSS), United Strates Department of Reclamation (USBS), United Strates Survey, Chalify of Survey, Chalify of Marte Branch (USBS), Last Anguels Annual Property Charles Chalify Chalify Survey, Chalify of Lang Baseh, Department of Survey, Project Project Health, City of Lang Baseh, Department of Public Health (LADPH), City of Lang Baseh, Department of Mark Resources (DMR), or surdicated to Survey Annual Testing Laboratories, in CTTL, for Calcinnia Department of Mark Resources (DMR), or surdicated to Survey Calcinnia Department of Mark Resources (DMR), or surdicated to Survey Calcinnia Department of Mark Resources (DMR), or surdicated to Survey Calcinnia Department of Mark Resources (DMR), or surdicated to Survey Calcinnia Department of Mark Resources (DMR), or surdicated to Survey Calcinnia Department of Mark Resources (DMR), or surdicated to Survey Calcinnia Department of Mark Resources (DMR), or surdicated to Survey Calcinnia Department of Mark Resources (DMR), or surdicated to Survey Calcinnia Department of Mark Resources (DMR), or surdicated to Survey Calcinnia Department of Mark Resources (DMR), or surdicated to Survey Calcinnia Department of Mark Resources (DMR), or surdicated to Survey Calcinnia Department of Mark Resources (DMR), or survey Calcinnia Department of Mark Resources (

CHEMICAL VALUE DESIGNACE WATER CHEMICAL LEVEL AND ACCOUNTS OF THE CHEMICAL LEVEL AND ACCOUNTS OF THE CONTRACT OF THE CONTRACT

CENTRAL VALLEY REGION (NO. 5)

	_	_				_		_			-						 	
			Anolyzed by i		nsgs													
		4	Hardness bid - Collfarm's CaCO ₃ 11y MPN/ml		Median 13.	Maximum 620.	Minimum 0.62											
		- 10	- Pid Eddu		CV .	5	-		-	6	-	15	7	C)	٦	CV .		
			OCO'S N O D		0	CV .	0		CJ	0	0	0	0	0	0	-		
			1		T 7	54	911		65	2.1	64	31	21	23	8	82		
		0.	\$ od -		21	17	13		16	50	16	18	54	57	50	13		
		Total	solved in ppm		it.	a 96	92 e		100 e	53 °	e 88	e 95	100 t	\$ 2 ₄	54 e	99		
			Other constituents										PO _{1, 0.00}			AS 0.02 ABS 0.0 POL 0.05		
		Ì	(5.02)										13			82		
	1	LO.	Borgn (B)		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
_	ports per million	per million	Fluo- ride (F)										0.00			0.00		
STA. 94	orts per	equivalents	rrote (NO ₃)										0.00			0.02		
N BAR (٩	viupa viupa	Chid (Cg)		0.12	3.5	4.6		5.0	1.4	3.9	2.6	2.4	0.03	2.2	3.0	 	
MICHIGA			Sul - fore (\$0 ₄)										2.6			3.2		
IVER AT		STITUEN	Bicar- banate (HCO ₃)		0.92	64 1.05	56 0.92		69	36	61	39	30	30	37	45.0		
COSUMNES RIVER AT MICHIGAN BAR (STA. 94	Money		Carbon- (CO ₃)		0.0	0.00	00.0		0.00	0.0	0.00	000	0.00	0.00	0.00	0.00		
SOD	M	I MAI	Potas- sium (X)										0.02			0.03		
			Sadium (No)		5.1	5.0	0.20		5.1	3.2	0.18	3.2	3.2	3.0	3.3	4.3 0.19		
			Magne- sium (Mg)										0.15			3.6		
			(Calcium (Co)		0.82°	1.08°	0.92°		1.17°	0.55°	0.98°	0.62°	5.5	0.42 e	295.0	9.2		
	_		F alb		7.6	7.5	7.3		7.5	7.5	7.3	7.3	7.3	7.1	7.5	7.8	 	
		Spacific	(micromhos of 25°C)		000	129	111		135	25	119	52	55	57	73	16		
					117	106	001		106	104	106	105	108	108	106	104		
			Dissalved oxygen ppm %Sq		10.0	10.3	11.2		14.0	1.11	15.1	11.5	10.6	10.0	0.6	7.8		
			E 0 E		1/2	29	8		82	45	64	52	19	%	1/2	92		
			Discharge Temp		4.3	24	8		45	1070	334	2280	3020	989	711	16		
			Samp'ed	1962	10/2	11/7	12/6	1963	1/14	2/7	3/18	17,71	5/15	6/3	7/8	9/12		

Laboratory pH

Due of calculus and anagers with representations of the capture of the contract of the contra Sum of calcium and magnesium in epm

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination

Annual majon and range respectively. Calculated from analyses of duplicate mannily samples made by California Department of Public Health, Division of Labanatories, or United States Public Health Service.

Mined onalyses made by United States Geological Survey, Quality of Water Bornel (1965), United States Indeed Propertment of Indeed States California (1964), San Bernardino County Flood

County Distrety SEGCON, Mempatics with the California (1974), San Bernardino County Flood

County Distrety SEGCON, Mempatics with California (1974), San Bernardino County Flood

Public Health (1967), Termail Esting Laboratories, Inc. (111), or California Department of Water Besauces (1978); or indicated

CENTRAL VALLEY REGION (No. 5)

г	_	_																 _
		Anologe	by i	USGS														
		Colifornh	Ity MPN/mi		Median 36.	Maximum 2,400.	Minimum 2.3											
		Total Pid	yii u		m	Н	10		CI	180	9	15	30	9	CV	m	CJ.	
	_	:	N CO B D E		0	0	9		6	O	.7	25	0	~	0	0	d	
		Hord	as CeCO ₃ n Tetal N.C. ppm ppm		17	108	111		116	81	117	1.07	95	8	100	760	82	
ľ		Pari	P 5		23	17	16		17	19	13	13	1,4	13	15	17	17	
		Totol dis-	solids In ppm										132 ^f 137 ^g				128 ^f 126 ^g	
			Other constituents				Tot. alk. 128				Tot. alk. 138		Tot. alk. 118 PO4 0.05				ABS 0.00 As 0.02	
		t	Silica (SiO ₂)										18				27	
	1	6	Beren (B)		0.0	0.1	7		0,0	0.0	0.1	0.0	0.1	0.0	0:0	0.1	0.0	
12b)	uoillie.	equivolents per million	Flue- ride (F)									-	0.2				0.01	
(STA.	ports per million	lents	rete (NO ₃)										0.05				0.0	
FIONWOOL	۵	o danv	Chio- rids (Ci)		6.6	12	10		12	4.5	7.8	4.4	3.8	0.50	7.8	4.8	5.6 0.16	
NEAR CO.	9		Sul - fete (SO ₄)										11 0.23				0.15	
COTTONWOOD CREEK NEAR COTTONWOOD (STA. 12b)	10001		Bicar- bonate (HCO ₃)		1.57	134 2.20	2.05		2.13	1.57	134	100	1.80	120	128	117	1.74	
TONWOOD	Mineral constituents		Cerbon- ete (CO ₅)		0.00	00.0	0.03		00.0	0.00	2 0.07	0.00	14 0.13	00.00	0.00	0.00	00:00	
COO	Z		Potas- sium (K)										0.02				0.0	
			Sodium (Ne)		8.6	0.43	9.6		11 0.48	8.7	0.35	7.4	6.8	0.31	0.36	0.35	0.34	
			Megne- sium (Mg)										0.80				9.6	
			Calcium (Ca)		1.42	2.16	2.23		2.32	1.62	2.34	2.14	22	1.99	2.01	1.68	0.85	
			a/b		8.0	8.0	8.3		8.0	7.8	8.3	1.8	8.2	7.5	: 100 Ed 1/2	7.5	8.24	
		Specific	(micromhos pH of 25°C)		170	255	245		267	186	259	225	509	213	224	203	190	
		7	gen (120	104	8		95	86	66	97	95	102	105	110	113	
			oey ppm		11.0	10.8	11.4		11.7	10.8	11.11	10.2	7.6	8.9	8.9	0.6	6.6	
			in of		89	57	64		1/1	52	51	55	58	72	75	78	72	
			in of a in of		8	125	200		290	2,950	570	1,250	1,300	165	167	06	75	
			sempled P.S.T.	1962	10/2	11/1	12/7	1963	1/4	2/4	3/1	1030	5/3	6/5	7/12	8/5	9/12	

ANALYSES OF SURFACE WATCH

Labaretary pH.

Sum of colcum and magnessum in Apm.

Iron (Fe), aluminum (Al), reported here as $\frac{0.0}{0.00}$ except as shown. Sum of colcium and magnesium in apm.

Darived fram conductivity vs TDS curves.

Grevimetric determination.

Determined by addition of analyzed constituents.

Mineral analyses made by United Stores Geological Survey, Quality of Water Branch (USGS); United Stores Department of the Interior, Bureau of Reclamation (USBR); United Stores County Flood
Control District (SECFCD); Metropolition Weter District of Southern California (MMD); Los Angeles Department of Water Resources (DMR); or indicated
Public Health (LBDPH); Terminal Testing Loberatories, Inc. (TTL); or California Department of Water Resources (DMR); os indicated Annual majan and range, respectively. Calculated from analyses of duplicate mankly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service

Marter and Control States Carbon and Novey, Control of Marter (Michael Control Description of Control of Contr

CENTRAL VALLEY REGION (NO. 5)

COTTONWOOD CREEK BELOW NORTH FORK COTTONWOOD CREEK (STA. 11a)

		Anolyzed by 1	1565								_						
		bid - Coliform															
	-	- No. o		~	~	-		-	5.00	9	£	2	J	50	-2	m	
		SON NE		70		ne		9	-4	0	0	^		~	0		
				111	11.7	117		115	33	105	33	86	75	122	102	801	
L	à	E O O		3.	15	2,1		13		07	22	=	7	I	71	13	
	Totol	solved solved in ppm										125 ¹ 130 ⁶				147f 140g	
		Other constituents				Tot. alk. 140		Tot. alk. 133		Tot. 01k. 128		Tot. alk. 114 Pou 0.05	Tot. alk. 11%	Tot. alk. 142	Tot. alk. 131	ABS 0.00	
		Silica (SiO ₂)										2				02	
	uoi	<u> </u>		0:0	2.0	0		0.0	0.0	0.0	이	0.0	0.0	0.0	0.1	0,0	
a cillian	per million	Fiuo- rids (F)										0.0				0.0	
norte ner million	ents p	frots (NO ₃)										1.1				4.00	_
iod	equivolents	Cnio- ride (Ci)		0.50	0.27	7.1		0.83	2.0	5.8	3.1	2.2	×. 1	6.0	6.8	0.34	
	Ē	Sul - fote (SO _e)		010	040	Ho		ΣIC	WIO	Mo	mio	9.0	210	Ø10	010	0.10	
	Mineral constituents	Bicor- bonate (HCO ₃)		2.16	2.33	136		2.08	1000	2.00	201	108	1.00	134	1.65	2.16	
	ol const	Corbon B		00.0	100.0	200		0.10	00.0	3.10	00.00	201.0	0.13	0.13	0.30	00:00	
	Miner	Potos- Co sium (K)		clo	ole	N/C		Mo	ole	Me.	ole	8.0	.z 0	-:10	8dc	7.10	
		Sodium (Na)		14	940	8.0	_	0.34	7.8	25.5	5.7	5.4	75.	0.7.0	0.33	0.34	
		Mogns- S sigm (Mg)		elc	045	ωι.		HO	HC	n.4 -	040	18:0	240	.90	70	1.01	
		Colcium (Co)		. 55	2.34	2.33c		2.29	— Iå	2.11	1.80	00:1 00:1	1.87c	2,44	2,04	31:1	
	_	1 °		8.1	014	0.00		- C	27.5	27.5	5.1	21.0	S 8. 5	7-10	110	2.8	_
	Sparific	(micromhas at 25°C)		566	560	249		250	179	222	201	17.6	194	241	227	237	
1		lved co		102	1000	102		101	88	105	101	100	100	103	907	107	
		Disso osy ppm		6.6	10.0	11.8		12.1	11.3	11.9	9*01	10.2	9.6	9.6	4.8	1.6	
-		d a o a		69	60 1	1.8		197	169	50	55 1	57 1	62	15	83	7-	
		Dischorge Temp in cfs in of Est. by sampler		30	30	100		20	001	150	300	500	100	100	35	25	
		Date ond time sompled P.S.T.	120%	10 2	11 2	12/7	5001	1/L 1615	2/11	3/4	1555	5/3	6/5	7/12	8/2 1320	9/12	

b Laboratory pH

Grovimetric determinotron.

Jum of Calculus and magnessum in them. c Sum of calcium and magnessum in epm.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves

h Annual median and range respectively. Colculaned from analyses of duplicate monthly samples made by California Department of Public Houlth, Division of Laboratones, or United States Public Houlth Services

Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Obspartment of Market Department of Water District of Southern California (MWD); Las Angeless Department of Water and Power (LADWP); City of Las Angeless, Department of Water Resources (DWR); as indicated Public Health (LBDPH); Terminal Testing Laboratories, Inc. (TTL); or California Department of Water Resources (DWR); as indicated

CENTRAL VALLEY REGION (NO. 5)

		Analyzsd by 1	USGS														
	=	bid - Coiform Analyzed ity MPN/ml by I															
	Tur-	- pid -			C)	-		н	200	2	15	ω		-	m		
		Total N.C.			15	CV .		18	0	6	CV	-г	а	5	CI		
		Hordness as CaCO _S Tatal N.C. ppm ppm			127	100		134	88	150	126	114	113	126	123		
	g.	eod -			3	23		19	20	17	17	15	16	18	19		
	Total	solved solids in ppm										154f 161 ^g					
		Other constituents				Tot. alk. 119		Tot. alk, 142		Tot. alk. 172	Tot. alk. 151	Tot. alk. 138 PO4 0.05	Tot. alk. 136		Tot. alk. 148		
_		Silica (SiO ₂)										13					
v. 11b	ion	Baran (B)			0.3	0.1		0:0	0.0	0.0	0.0	0:0	0.0	0.0	0.1		
X (ST/	r million per million	Flua- rids (F)										0.0					
DOD CREE	ports per million valents per mill	rota (NO ₃)										0.05					-
COTTONIA	ports psr squivalents	Chia- ride (CI)			28	16		23	5.0	14	8.8	5.8	9.0	16	0.42		
ABOVE	<u>c</u>	Sul - fats (SO ₄)										0.35					
JTH FORK	constituents	Bicar- bonats (HCO ₃)			2.25	114		2.21	110	167	2.39	130	2.13	2.41	132		
COTTONWOOD CHEEK, SOUTH FORK ABOVE COTTONWOOD CREEK (STA. 11b)	Mineral con	Carban- ats (CO ₃)			0.00	20.07		3 0.10	0.00	0.07	3	0.13	3.10	0.00	0.27		
IWOOD CI	Min	Potas- sium (X)										0.0					
COLLO		Sodium (No)			17	12 0.52		0.65	10	14000	0.52	9.3	9.6	0.57	0.57		
		Mogne- sium (Mg)										10					
		Caterum (Ca)			2.540	2.01		5.69	1.76	3.01	2.53	29	2.20	2.52	2.46		
		± °			2.0	8.3		8.4	8.0	800	0 KW	2.7	0.14	9.5	8.5		
	Specific	(micromhos of 25°C)			327	248		329	205	342	291	251	452	596	599		
		ygen ((109	100		103	98	103	66	76	97	110	77		
		Dissolvs d axygsn ppm %Sat			9.8	11.5		12.0	11.3	10.6	10.5	6.6	9.5	4.8	6.2		
	-	dE u			70	64		7,8	64	58	55	58	179	85	80		
		Discharge Tamp in efs in OF Est. by sampler		DRY	20	75		20	300	125	300	500	35	25	m	DRY	
	1	Dots and tims sampled P.S.T.	1962	10/2	11/1	12/7	1963	1/4	2/11 1040	3/1 1455	5/7	5/3	6/5	7/8	8/2	9/15	

38

b Labaratory pH.

Sum of calcium and magnessum in spm. I spm. I lead (Pb.), manganese (Mn.), zinc (Zn.), and hexavalent chramium (Cr.*5), reparted here as $\frac{0.0}{0.00}$ except as shown. Iran (Fe), aluminum (Al.), arsenic (As), copper (Cu.), I lead (Pb.), manganese (Mn.), zinc (Zn.), and hexavalent chramium (Cr.*5), reparted here as $\frac{0.0}{0.00}$ except as shown. Sum of calcium and magnesium in apm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Annual median and range respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division at Laboratories, or United States Public Health Service
Mineral analyses made by United States Geological Survey, Quality of Worst Principles and Propertment of Health Health States (September 18 States) Subject Memory and Propertment of West and Power (LADMP); City of Las Angeles, Department of West and Power (LADMP); City of Las Angeles, Department of Public Health (LADPH); City of Lang Beach, Department of Public Health (LBDPH); Triminal Testing Laboratories, Inc. (TL), or California Department of West Resources (DWR); as indicated.

Control to the Control of State of Stat

ANALYSES OF SURFACE WATER TABLE D-3

COW CREEK NEAR MILLWILLE (STA. 88a) CENTRAL VALLEY REGION (NO. 5)

		Analyzed by i	nscs													
		Hordnass luc-Coliform as CoCO ₃ ity MPN/mi														
		Pid -		5	10	2		٦	9	~	6	m	2	CI	7	7)
		Hordnass as CoCO ₃ Total N C ppm		0		0		0	0	9	0	0	0	0	-3-	H
				73	62	57		9	1,52	51	54	07	94	61	63	73
		Sod -		25	22	773		22	8	19	22	19	50	21	23	cu .
	Total	solved solids in ppm										76f 768				1276
		Other constituents										Poly 0.00				PO _{U, 0.02} As 0.01 ABS 0.00
		Silica (SiO ₂)	-							-	-	70				A
	5	5 1		0.7	0.0	0.0		0.0	0,0		0.1	0.0	5.0	0	0.2	0.0
	sourcements per million	Fluo- ride (F)										0.0				0.01
LA. COB	oris par	Ni - trote (NO ₃)										1.0				0.01
(S) (300)	2 2	Chiq- ride (Ct)		0.21	0.18	0.14		6.8	3.5	0.17	3.4	80.0	-18:	5.0	0.16	0.17
A MILLY	<u>=</u>	Sul - fots (504)										3.0				0.00
COM CREEN NEAR MILLIAME (SER. COR.)	nstifuent	Bicar- bonats (HCO ₃)		102	1.29	0.93		1.02	5.00	1.08	26.0	35.85	1.09	1.39	1.52	1.67
2000	Mineral constituents	Corbon- ote (CO ₃)		00.00	00.00	00*0		00.00	0,00	- 18	000	00*10	00.0	00.0	00.0	000*0
	ž	Potas- sium (K)										0.02				2.4 40.0
		Sodium (Na)		11 0.48	9.3	4-0		92.0	5.7	5.4	2.24	4.4	5.5	7.4	8.4 7.37	3.8 .: .: .:
		Mogns- sum (Mg)										3.6				17.0
	_	Calcium Mogns- (Ca) sium (Mg)		1.40	1:3	06.0		76.0	1.81	1.01	ů.	0.50	3.72	1.22	1.26	0.85
		B/B		9.7		7.		4:	35	45	1.	7:5	7.7		4.6	33
		Conductonce (micromhos pH of 25°C)		167	8	121				10,	п	86	Ħ	17	168	179
		yed (1-7	33	101		F	ā	103	100	96	105	115	117	8
		Disso		3	**	11.4		12.1	11		į.	8	3.5	0.0	9.1	3.
Ì		Tamp in OF		7	77 -	-		7	CJ.	· U	Ť	58	٦	70	33	72
		Dischorge Tamp		Ö	% 7	2_		3.17	, i		- 75	0006	239	- 1	35	37
		Date ond tims sompled P S.T.	1 4.	Lat	1-1	12-17	्र _{स्}	± €.		7,007	Jo.	2-	13	-14		(1)

o Field pH.

b Laboratory pH.

c Sum of calcium and magnesium in epm

c. Dum at cottudin and magnessium in teyin. d. Iron (Fe), olluminin (A), organic (Cu), ited (Pb), manganese (Ma), zinc (Zn), and hexavalent chromium (Cr. ⁶), reported here as $\frac{0.0}{0.00}$ except as shown.

e Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents. Grovimetric determination.

h Annual median and songe, respectively. Calculated from analyses of duplicate monthly samples, made by California Department of Public Health, Division of Laboratories, or United States Geological Survey, Calcular of Wester Boarch, (USCS), United States Geological Survey, Calcular of Wester Boarch, (USCS), United States Geological Survey, Calcular of Wester Boarch, (USCS), United States Geological Survey, Calcular of Wester States Geological Survey, Calcular of Wester Calcular of Wester Calcular of Wester (ADCMP), City of Los Angeles, Department of Wester (ADCMP), City of Los Angeles, Department of Wester Calcular of Mester Resources (UMR), as indicated.

CENTRAL VALLEY REGION (NO. 5)

		Anning	Anolyzed by ¹			USGS													
		H moon to	ity MPN/ml			Median 230.	Maximum >7000.	Minimum 6.2											
-		Tur	L Add			-2	8	35		52	130	9	01	9	6	9	-3	25	
Ì		-	S 000	O E		0	0	0		0	0	0	0	7	0	Q	0	0	
				Total		62	%	35		19	23	11	30	54	%	49	62	72	
		Per	sod -			88	30	21		31	22	25	16	22	93	27	8	었	
		dis-	solved	Edd Li		107°	100e	55 e		117	37 e	119	45 e	78 f	102e	107e	114e	131 ^f 127 ^g	
			Other constituents									-		AS 0.00 ABS 0.0				AS 0.00 ABS 0.0 FOL 0.00	
			Silica	SOIS)										थ				17	
	50	ullion	Boron	(B)		0.0	0.0	0.0		0.0	0.1	0.0	0:0	0.0	0.0	0.1	0.3	10.1	
8	million	per n	Floor	(F)										0.0				0.0	
E (STA	ports per	equivolents per million	ž	(NO ₃)										0.0				2.6	
DELTA CROSS CHANNEL NEAR WALNUT GROVE (STA. 98)	هٔ	Ainba	Chlo-			8.3	7.4	3.6		8.8	1.4	9.1	2.6	4.8	9.5	9.1	9.2	0.31	
TAR WALL	Ē		Sul -											0.12				0.23	
UNNEL NE	constituents		Bicor	(HCO ₃)		1.34	74	4.4 0.72		1.38	28	1.18	36	5 ⁴ 0.89	70	75	82 1.34	1.00	
ROSS CH	Moeral con		Carban	(CO3)		000	0.0	000		000	0.0	0.0	0.0	0.06	0.0	0.03	00.0	000	
DELTA C	M		Potos-	(X)										0.03				1.1 0.03	
			Sodium			1100	0.48	4.2		13 0.57	3.0	0.48	0.12	5.5	0.48	1100	12 0.52	16 0.70	
			Mogne-	(Mg)										0.39				9.6 0.79	
			Colcium	(°0)		1.24	1.12°	9.00		1.28°	0.46c	1.41°	0.61	0.50	1.11°	1.27c	1.240	13 0.65	
			I	ماه		7.3	7.3	7.1		7.3	7.1	7.3	7.8	7.5	7.3	8.3	7.3	7.7	
		Specific	(micramhos F	0 2 10		170	158	87		185	59	189	11	107	191	169	181	412	
				% Sot		74	986	84		76	101	16	8:	201	8	8	85	82	
			Dissolved	Edd		6.8	8.1	10.5		11.9	11.5	6.6	11.0	10.3	8.5	8.3	7.5	7.0	
			Te or			19	59	20		24	20	53	22	59	19	69	17	70	
			Dischorge Temp			Tidal													
			ond time	S	1962	10/3	11/8	12/5	1963	1/15	2/4	3/14	4/10	5/14	6/4	1/8	8/8	9/11	

Field pH.

ANALYSES OF SURFACE WATER CHERALY VALLEY HORION (NO. 5) BLOUGH AT PANIAN PARK BRIDGE (674. 108b)

Loborotory p.H.

d Iron (Fe), alumnum (Al.), arsenic (As), copper (Cu), lead (Pb), manganese (IAn), 2 mc (Zn), and hexavalent chromium (Cr^{.4}), reported here as <u>0.00</u> except as shown.

Determined by addition of analyzed constituents.

A Amuel medon and rongs, respectively. Calculated from analyses of deplicate monthly samples made by California Department of Public Health, Division of Lebaratories, or United States Public Health Service.

Mineral coalyses mode by Lared Secure Calculator and water Secure (USPHS), Land States Department of Department of Market and Paver (LADPH). California Child Department of Water and Paver (LADPH). City of Los Angeles, Department of Market and Paver (LADPH). City of Los Angeles, Department of Market and Paver (LADPH). California Department of Market and Labph). Faring Labbratoria, Inc. (TLL) and Calculatoria (Market Resources (DMR), as indicated.

ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (NO. 5)

DUTCH SLOUGH AT PARRAR PARK BRIDGE (STA. 108b)

_											
	Hordness bid - Coliform Anolyzed os CoCO3 112 MPN/mi by f			USBR							
	Coliform MPN/mi										
	- p.d.	2									
	000	o E da									
	Hordr 00 Co	Totol N.C.									
	Cent eod -	5						8			
	solved cent	mdd uj		544		322	192	136	172	324	556
		Other constituents									
	Silico	(20.02)									
		<u>(e)</u>									
million	-oni-	(F)									
ports per million	į	(NO ₃)									
la l	Chio-	(CI)						121			
5		(504)									
etituente	Bicor	(HCO ₃)									
Mineral constituents in	- no pou	(co ₃)									
M	Potas-	(No) 81Um 010								·	
	Sodium	(NO)						13			
	-eugon	Sium (Mg)									
		(co)									
	Ē										
	Specific conductance (micromhos pH	of 25°C)		321		884	272	189	212	1 ₂ 27	383
	9 5	%Sot									
	Dissolved	ppm %Sot								~	
	Ten or			8			61	72	1/2	73	57
	Dischorge Temp										
	Dote ond time	P.S.T	1962	10/17	1963	1,48	5/13 1340	6/11/9 1245	7/9	8/12	9/10

o Field pH

b Loborotory pH.

c Sum of colcium and magnesium in epm.

c Sum of colcum and magnesum in spin.

I from (Fe), aluminum (AI), aresenc (As), capper (Cu), lead (Pb), manganese (Vin), zinc (Zn), and hexavalent chromium (G⁺⁸), reported here as \$\frac{0}{0.00}\$ except as shown.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents. g Gravimetric determination

h Annual median and range respectively. Calculated from analyses of duplicate monthly samples made by Caldenia Department of Public Health, Division of Laboratories, or United States Dead States Geological States, Duality of Water Banach (USS), that of States Geological States, Duality of Water Banach (USS), that States Duality of Los Angeles, Department of Water Resources (URPM), city of Los Angeles, Department of Public Health (LADPM), City of Long Beach, Department of Public Health (LADPM), City of Long Beach, Department of Mater Resources (UMR), or indicated.

CENTRAL VALLEY REGION (NO. 5)

		Anolyzed by i		USGS														
		Hordness bid-Coliformh ae CaCO ₃ ify MPN/mi																
		1 p 2 g					m			280		5	23	21	8	2		
		000	Tatol N.C. ppm ppm				13		25	~!	9	~1	0	ou .	22	ş		
		Hord Oe C	Tatol				17.1		1.90	81	168	137	117	168	202	230		
		Par- cent					179		19	11	13	11	12	13	15	77		
	,	dis- solved sod- solids	m ppm										140.f 144.f					
							Tot. alk. 133		Tot. alk. 210		Tot. alk. 19I	Tot. alk. 166	Tot. alk. 145 PO4 0.05	Tot. alk. 203	Tot. alk. 273	Tot. alk. 244		
		Silico	(2015)										긔					
		<u>c</u>	69				01		970	17	0.0	0.1	0.0	0	0.0	0.0		
	million	Fluo-	E(L)										10.0					
95a)	ports per million	1 Z	(NO ₃)										0.0 10.0					
CR (STA.	ă	Chio-	(C()				31		35	3.5	16 0.45	8.2	0.12	16	288 0.78	28		
AT GERBE	- C		(\$0\$)										10					
ELDER CREEK AT GERBER (STA. 95a)	constituents	Bicar	(HCO ₃)				3.05		3.21	27,	3.03	2.59	137	3.03	3.26	5.77		
ELDER	Mineral con	Corban	(CO3)				3.10		0.30	00.0	9	0.13	4 0.13	1,30	0.37	1.23		
	Min	Potas-	(X)										8,0					
		Sodium	(N 0)				9.78		0.57	6.7	24 2	2 S	0.31	0.50	16	18 0.78		
		Mogne-	(Mg)										16					
		Calcium	(Co)				3.13		3.81.	1.67	₩. ₩.)	21	100	4.04	To-4		
		I	1/19				1.5		91.0	8.0		112	00 h	1	660	500		
		Spacific canductance (micromhos pH	01 20-0				400		044	17.5	357	, 50		33.	424	1468		
		D's d	%Sat				1.02		1.07	100	113	66	108	Ě	125	174		
		Dissolvs d	ppm %Sat				11.5		11.7	11.2	11.8	10.2	5.4	ż	10.0	14.1		
		Temp in of					90		53	51	57	77	3	62	72	79		
		Discharge Temp			DRY	DRY	83		51	580				3/4	53	(est.)	DRY	
		Dote ond time	P S.T.	1,762	1.7/1	1.000	12/10	2.16.2	1/1	2/11	1/1	1,500	5/3	6/5	7/11	8/9 1030	3/13	

b Labaratory pH.

e. Sum of salcum and magnessum in epm.
d tran (Fa), autumnum (A1), arsenic (As), copper (Cu), lead (Pb), manganese (Un), zinc (Zn), and haravalent chromium (Ci '6), reported here as \$\frac{0.0}{0.00}\$. c Sum of calcium and magnassum in apm.

Determined by addition of analyzed canstituents. Derived from conductivity vs TDS curves

Gravimetric determination.

h Annual majan and rongs, respectively. Calculated from analyses of duplicate monthly samples, made by Calciania Opparment of Public Houlth, Division of Labardonies, at United States Public Houlth Service.

In Annual analyses made by United States Carological Survey, Chality of Water Branch (USC), United Houlth Service (USFHS), San Bernardina Carological Survey, Chality of Managed Instituted States Carological Survey, Chality of Water Calciania (WWD); Los Angeles, Department of Water Carological Survey, Chality of Los Angeles, Caporiment of Water Carological Survey, Carological Survey, Carological Survey, Calciania Oppartment of Water Resources (UWR); as indicated.

Paint Houlth, LBDPH); Tanimal Farring, Laboratories, Inc. (T.I.L.) and Calciania Oppartment of Water Resources (UWR); as indicated.

ANALYSES OF SURFACE, WATER

CENTRAL VALLEY REGION (NO. 5)

ELDER CREEK NEAR PASKENTA (STA. 190)

		Analyzed by i	ಬ್ರಾಧಾ													
		Hordness bid Coliform as CoCO ₃ ity MPN/mil ppm ppm ppm														
		ty magan		7	-7	4		-	~	-	-2	0	~	-	-	~
		0000 N C D D D		10	2	7		t	~	-		-,		7	98	5
		Hordn os Co Totol ppm		179	E 3	151		2 1	37	-	117	1,7	166	88	208	232
	ć	- pos		30	2	17		83	5	70	red red	=	ä	57	29	3.
	Total	solved solids in ppm										161 ^f 150 ^g				399f 4268
	-	Other constituents		Tot. alk. Lac		T t. alk. 4/2		Tot. alk 10	Tot. alk. 164	Tot. alk. 208		Tot. alk. 125	Tot. alk. 1.	Tot. alk. 2 U	Tot. alk. 210	Tot. alk. ∠02 Po _{1, 0.15} As <u>C.01</u> AB\$ <u>0.00</u>
		Silic 6 (SiO ₂)		-								2				175
	lion	5		7	0	3		0.0	0.0	0,0	0.0	-10	-:	0.0	0	70
	per million	Flug- rids (F)										0.0				0.2
A. 150)	ports per million equivolents per mill	rate (NO ₃)										2.0				2000
ENTA (ST	o Ainbe	Chio- ride (CI)		46 1.30	8.8 8.	01.0		1,35	7.8	15.0	4	10 0A	81	34.0	70.	138 3.89
H PASK	Ē	Sut - fote (SO ₄)										10				9.0
BLUER CHEEK NEAR PASKENIA (SIA. 138)	stituents	Bicar- benata (HCO ₃)		180	2.82	2.74		3.38	160	3.28	2.25	2.33	176 2.15	3.5	3.16	3.15
ELDEN C	Mineral constituents	Petas- Carbon- sium ate (K) (CO _S)		2003.	0.0	0.13		0.17	70.0	0.13	00*10	0.17	0.33	5.33	8	0.27
	Z	Potas- sium (K)										4.0				1.6 0.04
		Sodium (No)		1.8	18 0.78	114 0.61		28	6.9	0.57	5.7	0.33	110	0.87	30	63 2.74
		Mogns. sium (Mg)										114				35 2.84
		Colcium (Ca)		3.58	3.06	3+02		1.1	2.74	3.50	2.28	28	1:17	3.76	4.150	36
		a/b		8.1	88.1	1.8		010	0000	200	20,00	:	i di	0 0 0 0	2000	200
	9	(micromhos of 25°C)		757	368	335		961	258	38c	234		345	128	295	758
		gen %Sot		5	76	ಹ		103	2 3	101	10	8,	96	118	110	119
		Oreso		10.0	11.6	11.3		14. ,	11.2	11.0	11.	7.00	9.1	10.3	80.	8.
		Tamp in of		%	917	77		37	53	53	£ 2	73	99	77	8	77
		Oischorge Tamp in cfs in ^{OF}		δ	£,	-		17	185	2		1 2	77.7	17	.27	m
		Dote and time sampled P.S.T	1 402	11,18	11/28	12/19	1.43	1/16	2/20	3/20	1200	153	6/6	7/9	8/7 1050	9/11

Laboratory pH

Sum of calcium and magnessum in epm. I tooper (Cu), lead (Pb), manganesa (Mn), zinc (Zn), and hexavalent chramium (Ci *6), reperted here as 0.0 except as shown. Iron (Fe), aluminum (Al), orsanic (As), copper (Cu), lead (Pb), manganesa (Mn), zinc (Zn), and hexavalent chramium (Al), orsanic (As), copper (Cu), lead (Pb), manganesa (Mn), zinc (Zn), and hexavalent chramium (Ci *6), respectively.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by Californie Department of Public Health, Division of Laboraterist, or United States Public Health Service
Misser (1850-01), Assorbed States Geological Survey, Quality of Water Broad States States Communicated (1850-01), Assorbed States States States States (1850-01), San Bennedino Caunty Flood
Control District 1850-01), San States of States of States (1850-01), Laboraterial States (1850-01), San Bennedino (1860-01), San Board, Department of Water and Power (140), City of Long Boach, Department of Man Resources (1948), as indicated.
Public Health (140), Terminal Teatment California Department of Water Resources (1948), as indicated.

ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (NO. 5) TABLE D-3

FALSE RIVER AT WEBB PUMP (STA. 1128)

-		_										
		Hardness bid - Coliformh Analyzed	by I		USBR							
		Solitermh	MPN/at									
-		bid - C	E 00 L									
1			S O E									
-		Hardn	Tetal N.C.									
-		90	55									
	100	200	e spiles		216		540	140	124	128	550	212
			Other constituents									
		r	Silico SiO ₂)									
	00	5	Boron Silico (B) (SiO ₂)									
	million		Fluor ride (F)									
	parts per million		trots (NO _S)									
	8	Anna	rids (CI)									
	Ē		Sul - fots (SO ₄)									
	streents		Bicor- bonote (HCO ₃)									
	Minsrol censtitusnts in		Potos- Corbon- sum ote (K) (CO ₃)									
	Min		Potos- (x)									
			(NO)									
			Mogne- sium (Mg)									
			Celcium Mogner (Ce) (Mg)									
		Specific	ppm %Sat at 25°C)		231		349	194	150	188	284	272
		olved	ppm %Sat									
		Disse	ppm									
		Teno	E 0		29			9	7.1	72	77	0
		Dischorae	in cfs in aF									
			sampled P.S.T	1962	10/17	1963	1240	5/13	6/11	7/9	8/12 1035	9/10

Laboratory pH

THER STANKS, MILLS POSE NEAR PRINTERS (1975, 1931)

ANALYSES OF SURFACE WATER

Table | Pages | Pages

Sum of calcium and magnesium in epm.

Sum of calcium and magnessum in elm... Iron (Fe), eluminum (AI), ersenic (As), copper (Cu), lead (Pb), manganesa (Mn), zinc (Zn), and hexavalent chromium (Ci -16), reparted here as $\frac{0.0}{0.00}$ except as shown.

Determined by addition of analyzed constituents. Darived from conductivity vs TDS curves

Gravimetric determination.

Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Lebanatorias, or United States Public Health Service.

Mineral analyses made by United States Goological Survey, Quality of Water Broadcock (USSS), United States Coological Survey, Quality of Water Broadcock (USSS), United States Public Health Service USPHS); Son Bennadion County of Water Broadcock (USSS), United States of Submitted Collection (USPR), Las Angeles, Department of Water and Power (LADMP); City of Los Angeles, Department of Public Health (LADPH); City of Los Angeles, Department of Water Resources (UWR), as indicated Angeles, Department of Public Health (LADPH); City of Los Angeles, Department of Water Resources (UWR), as indicated the Public Health (LADPH); Terminal Teatural Lebanatories, Inc. (TTL) or Galdrano Begarinment of Water Resources (UWR), as indicated to the Control State of Control State

normani al Dadis, Handik, Descana el Calmaninales, su Onical Sames Padis Handik Servis.
In al mesen el del manier Chinese de Calmaninales, su Onical Sames Padis Handik Servis.
Indiana de la compania de la compania de Calmaninal de Padish in Barrier de Servis de Calmaninales, Camaninales, Ca

CENTRAL VALLEY REGION (NO. 5)

PRETHER DIVER MINNE BORY NEAR MERRINGS (CTA. 10h)

		Anolyzed by i	nsos			
		os CoCO ₃ ity MPN/mi by i	Median 1.3	Maximum 23.	Minimum ,23	
		- L. C.	н	-	m	
		Hordnass os CoCO ₃ Toto! N.C. ppm ppm	0	-	0	
		Hord Totol Pam	8	61	92	
		000	70	15	15	
	Total	solids cont			86 f	
		Other constituents			AS 0.00 ABS 0.0	
		Silico (SiO _E)			77	
	Hon	Boron Silico	0.0	0.0	0.1	
4. 19b	9 2	Fluo- ride (F)			0.0	
FEATHER RIVER, MIDDLE FORK NEAR MERRIMAC (STA. 19b)	equivolents per million	No Profe (NO.s)			0.02	
AR MERRI	N N N	Chlo- rids (CI)	3.6	1.8	0.00	
ORK NE	č	Sul - fote (SO ₄)			5.0	
MIDDLE	natitueni	Brear- bonata (HCO _S)	1.11	73	75	
RIVER,	Mineral constituents in	Potos- Corbon Bicar- eium ote bond's (K) (CO ₃) (HCO ₃)	0.00	00.00	00.0	
FEATHER	ž	Potos- sium (K)			0.03	
		Sodium (No)	0.19	4.8	4.8	
		Calcium Magns-			3.8	
Į		Calcium (Co)	1.00	1.22	17 0.85	
		F alb	8.0	8.0	7.7	
		(micromhos pH at 25°C)	116	132	137	
		ved % Sot	113	104	101	
Ì		Dissolved osygen pom %Sot	6.6	9.1	9.3	
		Ten or	99	99	29	
		Orschorge Temp Dissolved on cfs in of ppm %Sot	ट क्ष	251	195	
		ond time compled P.S.T.	1963 7/9 1335	8/7	9/15	

a Field pH.

b Loborotory pH.

c Sum of colcium and magnesium in epm.

c. Dum at colculum and magnessum in semi. d trans (Fa), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Ci *⁶), reparted hara as $\frac{9}{0.0}$ except as shown.

Darived from conductivity vs TDS curves.

Determined by addition of onalyzed constituents.

g Grovimetric determination.

h Annual median and range, respectively. Calculosed from analyses of duplicate monthly samples made by California Department of Public Health, Division of Loboratories, or United Stores Public Health Service

i Maneria analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior and States Department of the mode of States Department of Man and Provided Department of Man and Provided Department of Man and States Department of Memory of Provided Department of Probine Headth (LADPH); City of Lang Beach, Department of Man Resources (DMR); or indicated.

Painted Headth, LEDPH); Termine Technological Interior Continuous Department of Man Resources (DMR); or indicated.

CENTRAL VALLEY REGION (NO. 5)

		Anolyzed by I			USGS												
		Tur- bid-Coliform			Median 230.	Meximum 2400.	Minimum 5.										
		bid- ity	E 00 E		#	80	5		01	8	-	20	01	517	2	е	-
		Hordness b	Total N.C. ppm ppm		0	0	0		0	ω	0	0	0	0	0	0	-
		Hore	Total		55	14	7.7		27	118	91	82	28	33	8	11	69
-		Par-	5		8	17	17		16	8	15	16	17	17	16	15	77
	1	Paylog -solved	n 904		83 e	9L	71 e		e 19	32 e	73 e	e 29	1 LT E	50 e	80 6	110 ^e	100 ^f 100 ^g
			Other constituents										AS 0.01 ABS 0.0				AS 0.02 ABS 0.0
		001	(\$°0'S)										13				91
	1	8	(B)		0.0	0.0	0.1		0.0	0.0	0.1	0.0	0.0	0.1	0.0	0.0	0.0
TA. 20)	ports per million	Fluo-	rida (F)										0.2				0.2
A. 20)	oris per	N - N	(NO ₃)	-									0.5				7.1
AUS (BT	2	Chlo-	(CI)		0.06	3.6	3.0		3.0	2.6	1.8	3.2	0.0	1.7	2.1	3.2	3.3
N. MICOL	c e	1	(504)										3.0				6.6 0.14
FEATHER HIVER AT NICOLAUS (STA. 20)	stituant	Bicor-	(HCO ₃)		1.20	62 1.02	0.92		52 0.85	0.30	58 0.95	940	34 0.56	0°.66	67 1.10	1.44	1.28
FEATHER	Mineral constituents	Corbon	(CO ₃)		0.0	00.0	0.0		0.0	0.00	0.00	0.0	0.00	00.0	00.0	0.00	000
	Min	Polos-	#(X)										0.3				1.7
		Sodium	(N 0)		5.6	0.19	4.1 0.1B		3.6	2.1	3.7	3.2	2.8	3.3	0.19	5.9	0.22
		Magna-	€(6 Mg)										2.3				0.50
		Salctum	(Co) 810m (Mg)		1.10°	0.9°	0.88°		0.84°	0.37°	0.91°	0.76°	7.4	0.67	1.01	1.12	0.80
		Į,	41.0		7.5	6.7	7.3		7.2	7.1	7.3	7.3	7.3	7.5	7.8	8.0	7.6
		Spacific conductonce (micromhos	ot 25°C)		123	113	105		8	L71	108	93	19	75	119	164	149
		D	%Sot		977	8.	16		96	106	101	96	104	91	76	93	78
		Dissolved	₩ da		9.5	0.6	11.0		12.2	11.3	11.3	10.8	10.8	6.8	8.7	7.6	7.7
-					73	8	20		1,	55	51	51	57	39	70	42	Ę
		Dischorge Temp			1350	6180	8380		6190	560000	7780	17300	56900	0966	1930	550 eat.	1160
		Dote ond time	P.S.T	1962	10/1	11/1 0950	12/3 1035	1963	1/2	2/1 1610	3/5	1,72	5/9	6/3	7/9 0730	8/6 1045	9/13

o Field pH

Laboratory PH. Sum of magnassum in epin. I took (Pb.), manganess (Mn), zinc (Zn), and haxavalent chromium (Gr¹⁶), raported here as $\frac{0.0}{0.00}$ except as shown. Derived from condectivity vs. TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination.

Mineral analyses made by United States Geological Survey, Ouality of Water Branch (USGS), United States Department of the Interior, Bursou of Reclamation (USBR), United States Public Health Service (USPHS), San Benovidino County Fload County Fload District (SECFCD), Metopoliton Water District of Southern Caldonno (MWD), Las Angles & Department of Water Resources (DWR), as indicated.

Public Health (LBDPH), Tammal Testing Leboratories, Inc. (TTL), or Caldonno Department of Water Resources (DWR), as indicated. Annual readion and ronge, respectively. Colculated from modyses of duplicate monthly samples made by Coldania Department of Public Health, Division of Lobaratories, or United States Public Health Service.

ANALYSES OF SURFACE WATER

CENTRAL VALLEY REGION (NO. 5)

Date and time sampled P.S.T. 1963 7/10 8/7 9/13

USGS Hardness bid Coliformh os CaCO₃ ity MPN/mi Maximum 52. Minimum F.3 Wedian. ~ ~ Total N.C. 0 0 0 91 91 847 Total Per-dis-solved sad-solide lum 16 16 91 72 7 Other constituents AS 0.00 ABS 0.0 POL 0.05 Fluo- Boron Sinca ride (B) (SiO₂) 0.0 0.0 0.0 equivalents per million ports per million 0.1 FEATHER RIVER, NORTH FORK AT BIG BAR (STA. 19a) trate (NOs) 1.2 Chlo-ride (CI) 0.02 1.5 1.5 Sul -fote (SO₄) 0.05 Mineral constituents in Brear-bonate (HCO₃) 1.05 67 62 Corbon-00.00 0.00 Patos-sium (K) 1.7 Sodium (No) 3.9 4.3 3.8 Magne-sium (Mg) 5.1 (Ca) 0.55 0.92c 16.0 Specific conductance (micromhos pH of 25°C) 8.1 7.5 612 10.7 106 114 %Sat Dissolved 110 115 109 E E 10.01 6.6 Dischorge Temp . 69 25 59 64 20 99

Laborotory pH.

Sum of colcium and magnesium in epm.

Sum of colcum and magnessum in epm. I read (Pb), manganese (Mn), zinc (Zn), and hexavolent chromium (Cr¹⁵), reported here as $\frac{0.0}{0.00}$ except as shown. Iron (Fe), aluminum (Al), arsenic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavolent chromium (Cr¹⁵), reported here as $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

Amoul median and range, respectively, Coloulated fram analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United Stotes Public Health Service

ANALYSES OF SURFACE WATER

CENTRAL VALLEY REGION (NO. 5)

		Analyzed by i			necs													
		bid - Caliform			Median 23.	Maximum 1300.	Minimum 0.23											
	1	- piq -			-3	-3	15		cu	22	-3	15	20	8	4	9	8	
		000	N P		0	0	0		0	-	0	0	0	0	0	0	0	
		Hard os Co	Total		84	45	23		82	24	36	37	27	33	75	54	1.7	
		100 L			13	g	8		83	17	17	15	19	81	17	11	17	
	Total	solved solved	Edd u		- 92 - 138 -	a 69	38 e		61 e	38 °	57 e	61 e	20 12	55 e	e L9	e 69	71 e	
		Other panel tueste											AS 0.00 ABS 0.0 POL 0.05				AS 0.00 ABS 0.0	
		Silica	(20(5)										15				a	
	lion	5	<u>@</u>		0.0	0.0	0.0		0.0	0.0	0.1	0.1	0.1	0.0	0.1	0.1	0.0	
(6	militan per mil	Fluor	(F)										0.2				0.0	
STA. 1	parts per millian	ı.	(NO ₃)										000				0.02	
OVILLE (equiva	Chlo-	ê(C)		0.03	2.1	0.03		0.00	3.2	0.05	3.0	9.0	1.4	1.4	1.8	0.05	
KEAR OR	<u>=</u>	Sul -	(\$0\$)										2.0				0.02	
FEATHER RIVER NEAR OROVILLE (STA. 19)	constituents	Bicar	(HCO ₃)		72 1.18	62	30		52 0.85	28 0.46	6 1 0	50	35	44 0.72	59 0.97	80.0	66 1.03	
FEATHER	Mineral com		(CO ₃)		000	0.0	0.0		000	00.0	0.0	000	0.0	0.0	0.0	0.0	000	
	Min	Potos-	E(X)										0.0				0.04	
		Sodium	(NO)		5.3	0.50	3.1		3.8	2.4	3.4	3.0	2.9	3.5	0.18	9.2	0.20	
		Magne-	(Mg)										2.2				0.34	
			(Co)		9.90	0.80	0.470		294.0	0.48	0.71	0.740	7.2	0.67	0.85	0.90	09.00	
		H	0.10		6.6	7.7	7.2		7.3	7.3	7.3	7.3	7.3	7.7	7.7	7.9	7.7	
		conductance (micromhas	or 25-c		711	104	57		35	57	98	91	75	82	101	103	177	
		D C > 0	%Sat		102	108	=======================================		107	927	110	108	109	104	108	104	100	
		Dissolved	Edd		7.6	10.8	12.5		13.4	14.1	12.8	12.9	15.1	10.4	10.2	9.3	9.3	
					79	59	8		242	20	Ĺή	54	51	59	79	69	99	
		Discharge Temp							3430	110000	3970	0046	15000	5790	3320	1,820	1830	
		and time	P.S.T.	1962	10/1	11/1	12/3	1963	1/2	2/1	3/5	4/2	5/9	6/3	7/9	8/6 1330	9/12	

b Lobaratory pH. o Field pH.

e. Sum at calcium and magnesium in epm. d in the control of the co

c Sum of calcium and magnesium in epm.

Determined by addition of analyzed constituents. · Derived from conductivity vs TDS curves.

g Gravimetric determination.

h Annual median and range, respectively, Calculared from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laborataries, or United States Dublic Health Service

Lower Division (USBR), United States Geological Survey, Oxality of Water States Character Userlass, Division of Water States Character (Userlass), Son Bernadina Character (Userlass)

ANALYSES OF SURFACE WATER
CRAPAL VALLEY INCOLUN (NO. 9)

Marved models States Castlegas Sarvey, Constitute of Sarvey, Constitute States Described Sarvey, Constitute States Sarvey, Constitute Sarvey, Consti

CENTRAL VALLEY REGION (NO. 5)

		pazkio	<u>,</u>		UBGS													
		¥.	• F			g	9											
		Hordness bid - Coliform Analyzed			Median 230.	Mextmum 7000,	Minimum 6.2											
		1 b	mộơ n		15	97	93		90	9	91	25	%	20	9	m	10	
		880	Total N.C.		0	0	0		0	0	0	0	0	0	0	0	0	
					53	9	39		3	%	7,5	37	56	31	51	17	8	
		Per	5		81	16	84		g	8	16	15	16	87	91	16	15	
		0 0 0	solids in ppm		81 e	72 e	61 e		e #9	45 e	e 69	8	17 f	50 e	80 e	109 ^e	8/8	
			Other constituents										PO ₄ 0.05				AS 0.02 ABS 0.0 PO _{\(\psi\} 0.10	
			(30.0) (SiO ₂)										71				15	
			Boron (B)		0.0	0.0	0.0		0.0	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	
208)	million	Der million	(F)										0.0				0.0	
D (STA.			trots (NO ₃)										0.0				0.02	
HAI BEN	٩	94014	#(D)	!	0.05	2.8	2.6		1.5	2.0	0.07	2.2	1.5	2.0	2.2	4.2	3.0	
W SHANG	Ē		fors (SO ₄)										3.0				7.0	
VER BELO	18 tituent		(HCO ₃)		72 1.18	63	0.82		54 0.89	33	54 0.89	50	34	04,0	1.08	86 1.41	1.25	
FEATHER RIVER BELOW SHANGHAI BEND (STA. 208)	Mineral constituents		(CO ₃)		000	0.00	0.00		0.00	0.0	00.0	0.00	0.0	0.00	000	000	0.0	
E.	ž	1	(X)										0.5				0.03	
			Sodium (No)		5.2	4.8	3.9		3.8	3.1	3.7	3.0	0.10	3.3	0.19	6.1	5.1	
			Sum Sum (Mg)										2.2 0.18				0,40	
			Calcium (Ca)		1.06°	0.91°	0.79°		0.80	0.52°	0.83°	0.740	6.8	0.620	1.02	1.42	16	
					7.3	7.1	7.3		7.2	7.1	7.3	7.3	7.3	7.3	7.4	7.5	7.7	
		Spacific	ot 25°C)		123	109	93		26	73	8:	91	19	92	121	165	139	•
		Dissolvad	%Sot		103	%	8.		76	102	100	103	104	ま	96	96	78	
			100 mg		9.1	8.6	11.1		75.51	11.4	7.11	11.7	11.2	4.6	7.00	7.8	7.5	
		S S	£		11	92	90		17	51	20	20	75	3	12	92	70	
		Dischorgs Tamp	# 55 85 85 85 85 85 85 85 85 85 85 85 85		1600	2665	19000 est.		5910	37400	6370	15600	2550	876	3090	658	1050	
			P.S.T.	1962	10/1	11/1	12/3	1963	1/2	2/5	3/5	14/2	5/9	6/3	7/9	8/6	9/13	

Labarotory pH.

Sum of colcium and magnesium in epm.

Sum of cocicum and magnessum in egm.

Iron (Fe), aluminum (Al), orsenic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr⁺⁵), reparted here as 0.0 except as shown.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents

Gravimetric determination.

Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United Stotes Public Health Service

Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamaton (USBR), United States Public Health Service (USPHS); Son Bennardina Caunty Flood Courted District (SBCFCD); Metropolition Water District of Southern California (MMD); Las Anagless Department of Water Resources (DMR); City of Las Angeless, Department of Public Health (LBDPH); Terminal Testing Laborationes, Inc. (TIL); or California Department of Water Resources (DMR); as indicated.

CENTRAL VALLEY REGION (NO. 5)

_							
		Anolyzed by §	SSSD				
	A	Herdnass bid - Coifform Analyzed as CoCO ₃ 1ty MPN/ml by i ppm ppm ppm	Mod fan	2.1	Maximum 62.	Minimum 0.6	
-	- in	Did - C	0		C)	C)	
		N C.	c	>	0	0	
		Hordnass os CoCO ₃ Total N.C.	18	3	18	18	
	Per	sod -	8	3	8	8	
	Total	solved and - solids solids solids			,	10 34	
		Other constituents				AS 0.01 ABS 0.0 Pot 0.00	
	Ì	Silica (SiOg)				1	
	lion	Boron Silica (B) (SiOg)	0	3	0.0	0.0	
million	er Bil	Fluo- ride (F)				0.1	
sorts our million	equivolente per million	Ni- trote (NO ₃)				0.5	
ON TOWN	equivo	Chio- ride (CI)	α	0.02	0.03	0.0	
Old Dia	c i	Sul - fote (SO _e)				0.02	
FEATHER HIVER, SOUTH FORE DELOW FUNDERSON DAY (SIX: 170)	stituent	Bicar- bonate (HCO ₃)	60	0.3	23 0.38	24	
HIVER,	Minarol constituents in	Corbon- ote (CO ₅)		0.0	0.0	0,0	
anna a	Min	Potos- sium (K)				0.5	
		Sodium (No)		60.0	2.1	2.1	
		Magne- stum (Mg)				0.11	
		Calcium Magne-		0.36°	0.36°	5.0	
		Z elo		7.5	6.9	7.4	
	Specific	Dissolvad conductonce pH oaygan (micromhos pH obygan of 25°C)		4.7	45	911	
		yan %Sot		109	97	102	
		Diasolvad osygen ppm %Sot		11.1	9.6	7.6	
-		Teap in of	1	8	57	29	
		Discharge Temp		211	82	37	
		ond time sompled P.S.T.	1963	1/9	8/7	9/12	

Laboratory pH.

Sum of calcium and magnessum in e.pm. I copper (Cu), lead (Pb), manganese (UA), znc (Zn), and hexavalent chromium (C.^{1,0}), reported here as 0.00 except as shown. Iran (Fe), aluminum (A1), arsence (As), copper (Cu), lead (Pb), manganese (UA), znc (Zn), and hexavalent chromium (C.^{1,0}), reported here as 0.00 except as shown.

Darived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Grovimetric determination.

Annual makin and range respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

Mineral analyses made by United States Geological Survey, Quality of Water Brond, (USSS), United States Public Health Service (USPHS), San Bernadina County Flood
Control Division (1888), United States Cological Survey, Quality of Wall); Las Angeles, Department of Water and Power (LADWP); City of Las Angeles, Department of Water and Power (LADWP); City of Las Angeles, Department of Water Resources (DMR); as indicated Angeles, Department of Public Health, (LADPH); City of Lang Beach, Department of Public Health, Terminal Teature Laboratories, inc. (TLL), or California Department of Water Resources (DMR); as indicated Angeles, Department of Public Health, Terminal Teature Laboratories, Inc. (TLL), or California Department of Water Resources (DMR); as indicated Angeles, Department of Public Health, Terminal Teature Laboratories, Inc. (TLL), or California Department of Water Resources (DMR); as indicated Angeles, Department of Public Health (LBDPH); from the Teature Laboratories, Inc. (TLL), or California Department of Water Resources (DMR); as indicated Angeles, Department of Public Health (LBDPH); from the Teature of States (LBDPH); from the

ANALYSES OF SURFACE WATER

CENTRAL VALLEY REGION (NO. 5)

GRANT LINE CANAL AT TRACY ROAD BRIDGE (STA. 103a.)

		Analyzed by i			USGS													
		bid - Coliform 13 MPN/mt			Median 230.	Maximum 7000.	Minimum 13.											
	Į.	pid- mgg n			9	10	91		6	100	8	25	20	8	25	130	9	
		Hordness os CoCO ₃	N E		52	83	31		41	9	17	118	0	-7	276	118	19	
		Hord On C	Total N.C. ppm ppm		199	156	\$		121	8	179	73	39	37	168	261	212	
	4	Sod -			53	75	52		53	45	26	77	35	77	20	617	51	
	Totol	solved solids	E 0 0		924	387e	239°		323°	98	е 16η е	166e	85 f 97 8	a 6L	434e	593 ^e	525f 5558	
		Other constituents											PO4 0.20				AS 0.02 ABS 0.1 PO4 0.45	
		Silico	20102							-			91				98	
	illion	Boron			0.1	0.1	0:1		0.3	0.1	7.0	0:0	0.1	0.0	0.2	7.0	0.1	
100ar	per million	Fluor	(E)										0.01				0.1	
GRANT LINE CANAL AT ITACT NOAD BRIDGE (SIA: 1038)	equivolents per million	N	(NO3)										0.03				0.03	
During on	equi	- Chlo-	ĵ)		143	3.33	70		70 1.97	16	3.72	36	12 0.34	16	3.36	192	162	
LCI MO	5	Sul -	(80%)										7.0				66	
L AL IN	constituents	Bicor-	(HCO ₃)		2.93	132	1.26		1.61	39	132	67	177	99.0	319	174 2.85	2.95	
I'VE CAUM	Mineral cor	U	(00)		000	00.0	00.0		00.0	0.00	0.00	0.00	0.00	0000	00.0	0.00	0.0	
PRAINT PT	M	Potos-	(K)										1.6				4.0	
		Sodium			104	3.61	2.00		62 2.70	14	103	26	10	0.52	3.33	113	105	
		Mogne-	(Mg)										3.6				1.79	
		Colcium	T		3.98°	3.13°	1.88°		2.12	0.76°	3.58°	1.460	9.6	0.75°	3.36°	5.220	2.45	
		Fel	م		8.3	7.4	7.3		7.3	7.1	7.3	7.5	7.2	7.0	7.7	7.5	7.9	
	Specific	(mrcromhos)			866	704	484		555	151	648	285	125	136	947	1020	934	
			%Sot		711	82	62		81	986	85	88	88	8.	103	77	97	
		Dissolved	mdd		10.7	7.8	6.8		9.5	9.1	8.0	8.9	8.8	9.8	8.9	6.5	8.1	
-		Temp in of			88	8	51		24	55	57	59	8	19	73	75	92	
		Dischorge Temp		Tidal														
		ond time	P S.T	1962	10/4	11/14	12/11	1963	1/7	2/7	3/12	1130	5/13	6/5	7/9	8/7	9/10	

Pield pH

b Loboratory pH.

5 Sum of Golchim And magnesium in term. d. St.), arosper (Ca), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (G⁺⁶), reported here as $\frac{0.0}{0.00}$ except as shown. c Sum of colcium and magnesium in epm.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Grovimetric determination.

h Annot median and range, respectively. Colculored from analyses of duplicate manily samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

Mineral analyses made by United States Geological Survey, Quality of Water Branch (USSS), United States Comment of the Interior, Bureau of Reclamation (USBR); United States Public Health Service (USPHS); Son Bernardian Comment of States Public Health Service (USPHS); Son Bernardian Comment of States Public Health (LADPH); City of Lang Beach, Department of Public Health (LADPH); City of Lang Beach, Department of Mality Public Health (LADPH); City of Lang Beach, Department of Mality of Lang Beach, Department of Mality Resources (DMR); as addicated.

CENTRAL VALLEY REGION (NO. 5)

		Anolyzed by i			-													
		Os COCOS 117 MPN/mi			Median 23.	Maximum 620.	Minimum 0.62											
		- pid			0,	-2	25		6	10	15	20	15	15	CI	8		
		000 S	Total N.C.			0	0		0	0	0	0	0	0	0	0		
		i i			2	55	92		57	07	89	31	**	± €	\$	80		
		- po	1		19	22	21		21	22	19	13	8	18	19	~ 2. %		
	1	polios solids	E 4 6 c		59	95 °	, 199		まる	a 19	80	8	3/4	69	106°	55		
		Other constituents											PO4 0.05			AS 0.01 ABS 0.0 POL 0.20		
		Silco	(a)										25			72		
	lion	1 5	9		0.0	0.0	0.0		0:0	0,0	0.0	0.0	0.0	0.0	0.0	0.0		
174)	Ē		(F)										0.00			0.00		
S (STA.	ports per		(NO.3)										0.00			0.0		
ENT MILL	•	Chlo-	(C)		0.00	3.8	2.0		0.13	2.2	2.0	0.0	1.2	0.0	3.4	0.28		
CRESC	č	Suf -											0.03			9.0		
EK NEAR	stituents	Bicor -	(HCO3)		50 0.82	80	53		1.28	56.0	69	44	0.80	300	92 1.51	106		
INDIAN CREEK NEAR CRESCENT MILLS (STA. 174)	Mineral constituents	Carbon	(00)		0.00	0.00	00.00		0.00	0.00	0.00	0.00	0.0	0.0	0.00	00.0		
IN	M	Polos-	E S										0.0			3.5		
		Sodium	(NO)		0.50	7.2	4.7		0.30	5.3	5.3	3.5	4.2 0.13	4.4	7.2	0.43		
		Mogne-	(Mg)										2.4			6.7		
		Colcium	(00)		0.84	1.11	0.75		1.14	0.80	26.0	0.62	9.6	0.86	1.30	21		
		I	erc.		7.2	7.9	7.1		7.1	6.8	7.3	7.1	7.3	7.2	7.7	7.7		
		Specific conductonce (micromhos	01 62 0		56	139	ま		138	8,	117	77	. 85	101	156	203		
		D	%Sot		35	66	66		9.1	66	109	101	104	103	111	79		
		Dissolved	Edd		9.8	11.0	10.5		10.6	10.7	11.5	10.9	10.2	5.6	10.0	7.4	,	
	-		_		5	27	54		3/4	-3	94	3	51	65	3	55		
		Oischorge Tamp			1150	192	1400		165	980	397	3280	1510	675	66	95		
		Dots ond time	P.S.T	1962	10/18	11/21	12/18	1963	1/15	2/19	3/19	1,416	5/14	6/4	01/10	9/12		

Hq blas 4

Loboratory pH

Sum of calcum and magnessum in apm.

100 except 101, and (Pb), managinesia (Mn), zinc (Zn), and hazavalent chramium (Ci 10), raparted here as 0.0 except as shown Iran (Fe), alumnum (Al), arsenic (As), capper (Cu), lead (Pb), managinesia (Mn), zinc (Zn), and hazavalent chramium (Al), arsenic (As), capper (Cu), lead (Pb), managinesia (Mn), zinc (Zn), and hazavalent chramium (Al), arsenic (As), capper (Cu), lead (Pb), managinesia (Mn), zinc (Zn), and hazavalent chramium (Al), arsenic (As), capper (Cu), lead (Pb), managinesia (Mn), zinc (Zn), and hazavalent chramium (Al), arsenic (As), capper (Cu), lead (Pb), managinesia (Mn), zinc (Zn), and hazavalent chramium (Al), arsenic (Mn), and are as a comparable (Mn), and are a comparable (Mn)

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents

h Annual median and range, respectively. Colculated from analyses of deplicate monthly samples mode by California Opportment of Public Health, Divission of Laboratories, or United States Department of the Interior, Bureau of Reclamation (USBR), United States Department of the Interior, Bureau of Reclamation (USBR), United States Department of Water and Power (LADMP), City of Los Angeles Department of Reclamation (MADP), Los Angeles Department of Water and Power (LADMP), City of Los Angeles, Department of Water and Power (LADMP), City of Los Angeles, Department of Water and Power (LADMP), City of Los Angeles Department of Water and Power (LADMP), City of Los Angeles, Department of Water and Power (LADMP), City of Los Angeles, Department of Water Resources (DWR), or indicated

CHECKETAL VALLEY RESIDENCE (NO. 5) NO. () NO

Management States, temberal States, temberal States of the Control of the Control

CENTRAL VALLEY REGION (NO. 5)

				_																
			Analyzed by i			USCS														
			ity MPN/mi			Median	۲۶.	Maximum 7000.	Minimum 1.3											
		Tur-	- pod c			25		9	7		m	15	cu .	-	25	8	22	170	%	
			CO3	D P G		23		11	33		19	79	82	73	L 9	=	77.	4	0	
			Hord Os C	Total		118		328	309		346	707	320	349	329	20	70	77	89	
		Per	ad -			55		24	₹.		777	53	9	77	9	77	37	39	917	
		Total	solved	Edd .		300 e		9899	752°		e74e	988	e74e	916	719,	105 ^e	129°	133 ^e	209 ^f 2108	
			Other constituents											4	PO _{1,} 0.20				AS 0.00 ABS 0.0 POl ₁ 0.15	
		ı	Silica	200			_								21				18	
		ion	Baron	i)		0.5		2.0	2.2		2.3	3.0	2.0	2.3	7.	0.0	0.2	0.2	0.0	
	million	per mill	Flua-	(F)					<u> </u>						0.0				0.01	
ra. 107	ports per million	equivalents per million	Ž	(NO3)											0.19				2.8	
WOOD (ST	۵	equiv	Chla-	(C)		986	2.43	157	180		154	212 5.98	164	155	172	24 0.68	27	23	1.27	
R BRENT			Sul												2.21				80.0	
UGH NEA	******	STITUENT	Bicar	(HCO3)		116	1:8	306	337		340	386	295 1.84	336	300	4.7 0.77	68	82 1.34	. 97	
INDIAN SLOUGH NEAR BRENTWOOD (STA. 107)	Manage Comments	eral car	Carban	(00)		0	0.00	00.0	0.00		00.00	5	000	0.00	0.33	0000	0.00	00.00	0.00	
INI	M	N.	Potos-	E											0.00				2.1	
			Sodium	6		99	2.87	134 5.83	170		5.52	206 8.96	135	5.52	139	18	19	21 0.91	36	
			Aggne-	(S											3.34				10	
			Calcium Magne-	(02)			2.30	95.9	6.18		6.92	8.08	9.40	8.9	65	1.00	1.40	1.43	0.95	
			E (مرا ا		7.3	2.6	8.0	8.1		8.1	8.3	8.0	8.0	8.3	7.3	7.9	7.3	7.3	
		Specific	(micromhos pH		-	539	ì	1200	1350		1210	1590	1210	1220	1230	189	232	239	359	
			p = 0	%Sot		70	<u> </u>	66	66		96	85	901	108	148	89	27	98	88	
			Dissolved	mdd		9.9		5.6	10.8		10.1	8.2	10.5	10.7	13.5	8.0	0.9	7.1	7.4	
			e a b	1				9	53		96	63	61	61	-98	69	- 22	77	92	
			Discharge Temp		177	TENT				•										
			and ine	LS d.	6701	100	1005	11/13	12/10	1963	1/8	2/6	3/13	4/10	5/13	6/5	7/10	8/6	9/10	

Field pH.

Loboratory pH.

c Sum of calcium and magnesium in epm.

c. Sum of solicitym and magnessyum in sym.
d. Iron (Fe), oldymirum (A1), arsentic (Ae), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (C⁺⁴), reported here as $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

h Annoal median and songs, respectively, Calculoved from analyses of duplicate manthly samples, made by California Opparment of Public Health, Division of Laboratories, or United Stores Public Health Service.

Control Division (USBR), United Stores Geological Survey, Duckty of Ward Public Adaptives California (WAD); Las Anagles, Department of Matter and Power (LLD, DMP); City of Las Anagles, Department of Public Health (LBDPH); City of Las Anagles, Department of Walts and Power (LLD, DMP); City of Las Anagles, Department of Public Health (LBDPH); City of Lang Beach, Department of Public Health (LBDPH); City of Lang Beach, Department of Walts are assured to the Control of Matter Resources (DWR); as indicated.

CENTRAL VALLEY REGION (NO. 5)

		Anolyzed by 1		SUSU									-				
	£	bid - Coliform 17 MPN/ml		Median 6.2	Mex1mum 7000.	Minimum 0.62											
	L L	- pid - tr		9	10	97		9	35	8	15	8	10		52	91	
		D N CO		15	986	57		62	73	611	52	25	00			1	
				16	188	150		157	153	132	125	%	T 77	47	69	82	
	G.	sod -		25	54	25		95	52	8	95	R	177	3	35	77	
	Totol	solved solved in ppm		225 e	a 964	416e		412°	159e	412e	360e	281°F	87 e	142е	132e	171 ^f 179 ^g	
		Other constituents										POL 0.10				AS 0.01 ABS 0.0 POL 0.20	
	-	Silico (SiO ₂)	-									9				13	
	lion	Boron (B)		0.1	0.5	0.5		6.0	0.7	6.0	0.7	0.8	0.0	0.2	0.0	0.0	
	per million	Fluo- ride (F)										0.0		0.00		0.0	
106)		Ni- trote (NO ₃)										0.5	1.8	2.2	0.6	0.03	
H (STA.	equivolents	Chlo- ride (Cl)		1.72	154	3.53		134 3.78	3.58	3.47	100	888	19 0.54	31 0.87	23	34 0.96	
AR MOUT	č	Sul - fore (SO ₄)										06.0	12 0.25	23	18	23	
OUGH NE	constituents	Bicar- bonate (HCO ₃)		93	2.03	113		1070	97 1.59	101	98	1.41	99.0			.86	
ITALIAN SLOUGH NEAR MOUTH (STA. 106)	Mineral con	Potos- Corbon – B Sium ofe (K) (CO ₃) (0.0	0.00	00.0		0.0	0.00	0.00	0.00	0.00	0.00			00.0	
H	N.	Potos- Sium (K)										2.4				0.05	
		Sodium (No)		2.00	101	3.57		3.70	93	3.96	3.18	2.70	13	25 0.96	17.0	28	
		Magne- Stum (Mg)										9.4	0.33	7.5	7.8	9.6	
		Colcium (Co)		1.82	3.769	3.00		2.940	3.06°	2.630	2.50€	23	0.50	1.7	0.75	17	
		Ξ «Ιο		7.4	7.4	7.3		7.1	7.3	7.3	7.3	7.5	7.2	7.3	7.3	7.3	
	Specific	(micromnos o: 25°C)		394	869	729		722	751	721	631	906	153	648	231	305	
		yed %Sot		986	81	65		79	7/-	90	70	105	36	89	85	87	
		Dissolved oxygen ppm %Sot		7.8	7.9	9*9		7.7	7.5	8.3	8.5	9.6	9.6	7.7	7.1	7.3	
		Ten n oF		98	89	15		917	65	25	65	38	93	73	92	92	
		C.scrarge Temp	Tidal														
		Somp ed	1962	10/4	11/13	12/10	1963	1/7	2/6	3/13	4/10	5/7	6/5	7/9 0945	8/6	9/10	

b Loborotory pH

c. Sum of colcum and magnessium in epim. 300 per (Cu), lead (Pb), manganese (Mn), 2.nc (Zn), and hexavalent chromium (Cr*8), reported here as 0.00 except as shown. c Sum of colcium and magnesium in epm.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Annual median and range respectively. Calculated from analyses of duplicate monthly samples mode by California Department of Public Health, Division of Loboratories, or United States Public Health Service.

Remedian or support of the States Geological Survey, Quality of Warn Format States Department of the International Public Health Service (USPHS), Son Bernadina County Flood

Corne District States Control States Control Survey, Charles California (Wa), Lass Angeles and Power (LADPP), City of Los Angeles, Department of Public Health (LADPH), City of Long Beach, Department of Public Health (LADPH), City of Long Beach, Department of Public Health (LADPH), City of Long Beach, Department of Public Health (LADPH), City of Long Beach, Department of Public Health (LADPH), City of Long Beach, Department of Management (Tally and California Department of Warn Resources (DAR), or and received.

ANALYSES OF SUHFACE WATER CREMAL VALLEY INTO (10. ')

ANALYSES OF SURFACE WATER

CENTRAL VALLEY REGION (NO. 5)

			P S S														
			Analy		USCS												_
		-	bid Coliform Analyzed		Median 23.	Maximum >7000.	Minimum 2.3										
		Tur	- bid - bid mgd u		20	30	9		2	800	24.5	9	35	04	55	120	20
			Hordness oe CoCOs Totol N.C.		0	-	5		9	0	77	00	m	9	m	7	9
					92	70	8		118	95	151	145	132	120	97	79	81
		Per-	sod -		8	33	32		²	35	39	9	33	35	34	31	E 3
		Totol	solved solids in ppm		12T	15¢	154e		231	104e	297	247	2224 ^f	224°	175	138e	142 ⁴ 151 ⁸
			Other constituents										PO _{tt} 0.25			Color 35 Odor(1	AS 0.02 ABS 0.0 PO ₄ 0.30
			(SiO ₂)										17				25
	١	million	(B)		0:0	0.1	0.1		0.2	0.1	0.3	0.5	4.0	0.2	0.2	0.2	0:
	e lie	ber m	Fluo- ride (F)										0.03				0.01
LINDSEY SLOUGH NEAR RIO VISTA (STA. 110)	ports per million	equivolents	rrote (NO ₃)										2.7				0.03
VISTA (e dury	Chlo- ride (CI)		0.31	17 0.48	15		0.79	8.8	37	2 ⁴ 0.68	25	24 0.68	19	13	0.37
R RIO	9		Sul - fote (SO ₄)										34				0.31
OUGH NE	Mineral constituents		Bicor- bonate (HCO ₃)		1.61	101	101		132 2.16	1:11	170	167	157	2.28	1.88	95	.92 1.51
IDSEY SI	erol cor		Potos- Corbon- sium ote (K) (CO ₃)		0.00	0.00	0.00		0.0	00.0	00.00	00.00	0.00	0.00	0.00	0.00	0.0
LI	ž		Potos- sium (K)										0.05				0.04
			Sodium (No)		15	19 0.83	0.78		39	14	44 1.91	29	28	30	23	0.70	0.74
			Mogne- Sum (Mg)										18				0.87
			(Ca) (Mg)		1.52	1.68	1.75		2,360	1.11°	3.01°	2.900	23	2.40	1.93°	1.57c	0.75
			F elo		7.4	7.3	7.3		8.0	7.3	7.7	8.1	7.7	7.9	8.2	7.7	8.1
		Specific	(micromhos pH at 25°C) a		208	256	253		380	171	1,87	901	374	368	588	556	239
		_	gen (i		88	57	62		8	70	8	8	93	96	103	85	8
			Oissoived axygen ppm %Sa		8.2	5.7	8.9		11.5	7.5	9.1	9.1	8.9	6.8	0.6	7.7	0.8
					99	99	51		1,1	55	75	59	19	19	72	69	73
			Cischorge Temp														
		9.00	somp'ed PST	1962	10/3	11/8	12/5	1963	1/15	2/4	3/14	17/11	5/14	5760	7/8	8/8	9/11

o Field pH

b Loborotory pH.

c Sum of colcium and magnesium in epm.

c. Jum of soliculum ond magness in the pure (Cu), lead (Pb), manganese (Mn), 2 inc (Zn), and hexavalent chromium (Cf.*6), reported here as $\frac{0.0}{0.00}$ except as shown d Iron (Fe), olumnum (Al), passaim in epin.

Determined by addition of onolyzed constituents. e Derived from canductivity vs TDS curves

g Gravimetric determination.

h Annual median and ange, respectively, Colculored from analyses of duplicate monthly samples mode by California Department of Public Health, Division of Labbaratories, or United States Public Health Service.

I whose a note by United States Geological Survey, Quality of Wester Boards (1920), Las Angeles, Department of Reclamation (1920), United States (1924S), San Bernardina County Flood
Connot District (1820CD), Manapolium Meter District of Sauthern California (1920), Las Angeles, Department of March County Flood
County Carlos (1920), Terman of Sauthern California (1920), Las Angeles, Department of March Carlos (1920), Terman of Sauthern California Department of Water Resources (1928), Terman of March Carlos (1920), Terman of Sauth Carlos (1920), Terman of March Carlos (1920), Terman of March Carlos (1920), Terman of Sauthern California Department of Water Resources (1928), a midicated, 1920), Terman of March Carlos (1920), Terman of March Carlo

ANALYSES OF SURFACE WATCH

ANALYSES OF SURFACE WATER TABLE D-3

CENTRAL VALLEY REGION (NO. 5)

			ds Cocos nppm MPN/mi by i		UBGS													
		F	MPN/ml		Median 62.	Maximum 7000.	Minimum 6.2											
		10 L	n ppm		9	9	15		15	150	7	25	29	8	25	55		
			as CaCO ₃ Total N C PPm ppm		0	0	~		22	23	CI.	16	m	-3	6	0		
					69	20	57		98	8	8	72	£ 4	8	19	78		
		Per	and -		31	53	8		33	8	25	70	22	8	29	33		
	Total	0.5	solved salids in pom		123°	114 e	100°		160°	95 e	96 e	119 ^e	77 ^f 87 ^g	54 e	108°	$\frac{1^{100}^f}{136^8}$		
			Other constituents										PO ₄ 0.15			AS 0.01 ABS 0.0		
	1	ŀ	on Silica (SiO ₂)		ol.		ol .			ـــا			71			8		
	lion	-	e (B)		0:0	0.0	0.0		0:0	0.1	0:0	0:0	0.0	0.0	0.0	0:0	 	
66	er mil		Fluo- ride										0.0			0.00		
(STA.	ports per million		1rate (NO ₃)										0.0			0.0		
TRMINOUS	vino e		Chids (CI)		19 0.54	0.48	16		38	13	0.34	20	7.6	9.0	16	18 0.51		
AT TH	ē		Sul - tate (SO ₄)										7.0			7.0		
O SLOUGE	nstituent		Bicar- bonate (HCO ₃)		1.33	1.18	1.00		1.28	33	6.95	1.11	08.0	32	67	101		
LITTLE POTATO SLOUGH AT TERMINOUS (STA.	Mineral constituents		Carban- ate (CO _S)		0.00	0.00	0.0		0.0	0.0	0.0	0.0	00.00	0.00	0.00	00.00		
LITH	W		Potas- sium (K)										0.03			1.4		
			Sodium (No)		14	13 0.57	10		118	9.2	7.8	10	5.7	5.5	125.0	118		
			Magne- sum (Mg)										9.4			9.2		
			Calcium (Ca)		1.38°	1.40 €	1.14°		1.72°	1.01°	1.00°	1.430	9.6	0.59°	1.29c	16		
			A STO		7.5	7.3	7:1		7.7	6.7	7.5	7.3	7.5	7.3	7.6	2.7	 	
	Chanific	Specific	(micramhas at 25°C)		205	190	167		566	158	144	198	911	8	180	232		
		pex	% Sof		81	73	83		82	8	76	89	96	76	93	62		
		Disso	axygen ppm %Sot	-	9.7	7.5	9.3		10.0	6.3	10.0	9.1	0.6	9.6	8.3	6.9		
					59	93	51		5 17	95	55	92	59	8	02	72		
		Discharge	in of a in a f	TIDAL														
		Dare	sout sout	1962	10/8	11/14 1050	12/4	1963	1/7	2/5	3/11	1446	5/6	0250	7/8	9/11		

Freld pH

b Laborotory pH

c Sum of calcium and magnesium in epm.

c. James Control and Marsania (C.*), report (Cu), lead (Pb), manganese (Ma), and Ca), and hexavalent chromium (C.*), reported here as \$\frac{0}{0.00}\$ except as shown.

If the control of e Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents. g Gravimetric determination

Mineral analyses made by United States Geological Survey, Quality of Water Boanch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Public Health Survice (USPHS), San Bernardian County Fload
Control District (SECF District SECF Administration Section Control States). Department of Public Health (LADPH); City of Lass Angeles, Department of Public Health (LADPH); City of Lang Beach, Department of Water States Control Section h. Annual median and range, respectively. Calculared from analyses of dual care monthly samples made by California Department of Public Health, Division of Laboratories, or United Stores Public Health, Service.

CENTRAL VALLEY REGION (NO

MCCLOUD RIVER ABOVE .HASTA LAIG: (STA. 18)

		,	as CGCS ₂ by MPN/mi by i ppm ppm ppm ppm	USGE														
		4	MPN/mi		Median 13.	Maxis un 23 .	M1. ' .											
		5	ity mppm		-	5	0		95	-	^	2	-	-1	.7		2	
			SON SE		+	٠			-			-â-	1	7		_	-	
			- 1		C_7	85	\$		ξ.	92	9		7	37	777	35	₹	
		Per	- pog		22	55	計		50	ž.	à	-	7	2	÷	7.	2	
		Tatal dis-	solved solids in ppm										75 ^T				81 ¹ 78P	
			Other constituents										Po _{1, 0, 0,0}				PO4 0.05 A: 0.01 ABS 0.00	
		-	(S:02)										12				줬	
	5	III I	Boran (B)		0.0	0	01		0.0	27.0	3	0.0	3	3	9	7	3	
101	millio	per million	ride (F)										0.00				0.0	
T (DER.		aquivalents	rrote (NO ₃)										0.0				1.2	
ASTA DA		adni	Chio- ride (Ci)		0.0	200	0.0		2.7	2.2	2.0 0.0	4.0	0.00	0.03	0.08	0.10	200 C	
OVE AN	9	- 1	Sul - fate (SO ₄)										0.0				0.05	
MAYEN AD	of the state of the		Bicor- bonote (HCO ₃)		56,0 0.95	06.00	57.		55	48 0.79	57,00.93	0.7	27 0.74	0.84	66 1.06	JE JE	53.0	
MCCLOUD KIVER ABOVE JUSTA LAKE (STA. 10)	Mineral		Carbon- ote (CO ₃)		0.00	0.00	0.00		00.0	0.00	00.0	0.00	0.00	0.00	00.0	00.0	00.0	
2	M		Potos- sium (K)										200			_	1.1	
			Sodium (No)		5.4	5.7	0.17		4.4	3.7	3.9	0.10	3.8	3.7	7.2	6.7	5.0	
			Mogne- s-um (Mg)										7.20				0.0	
			Colc.um (Ca)		5 0.80	52.0	0.777		0.78	7 0.71	0.800	No.	T 25	0.70	6 213	0.01	8.8	
	_		₹ ⁰		1	7.5	- He		7.4	31:	7.5	35	- L	7-1	5.00	E.	31	
		Specific	(micromhos of 25°C)		96	97	9.		5	£),	₹	ž	80	11.	=	86	
		1	gen %Sat		007	Ē	101		<u>=</u>		in.	3		1.0	77	€0 F4	102	
			e dd		11.2	11.7	1 .2		4.7	1	5:	1:	11.1	11.	7.,	1.61	a.,	
		,			٦	14	345		9	8,		-14	3	3	î	-20	22	
			in cfs in 0F		499	1,140	1,340		1,570	4	1,590	. 3. 3.	10,	1,88	1,3	-1 2 4	1,13	
			sompled P.S.T.	1.46	10/3	11 14 1045	11/11	1.76.3	175.	1004	130	4, 18	5,1	13	7/11	8/6 0810	3/10	

Loboratory pH. a Field pH

c Sum of calcium and magnesium in epm.

Sum of colcium and magnessum in spin.

Iron (Fe), aluminum (A), conseric (As), copper (Cu), lead (Pb), manganase (Mn), 2 inc (Zn), and hexavalent chromium (Cr*^e), reported here as 0.00 on 0.000.

except as shown.

Determined by addition of analyzed constituents. Derived from canductivity vs TDS curves.

Gravimetric determination.

h Annual median and tange respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Deblic Health Service.

Control Dobby, Memopation Went of States Caelogical Survey, Quality of Water Branch (USCS), United States Caelogical Survey, Duality of Water Branch (USCS), United States Caelogical Survey, Duality of Water Branch (USCS), United States Caelogical Survey, Duality of Water Branch (USCS), Son Betranding Caelonia (USCB), United States States (USCB), Survey (USCB), Southern California California Department of Water Resources (USRS), city of Los Angeles, Department of Public Health (LADPH); City of Long Brach, Department of Public Health (LADPH); City of Long Brach, Department of Water Resources (UWR); as indicated.

CENTRAL VALLEY REGION (NO. 5)

MILL CREEK NEAR MOUTH (STA. 88)

		3,200			_															
		Hordness bid Coliform Anelyzed os CoCO ₃ 1ty MPN/mi by i	- -			H	£													
		Coliform MPN/m		Median	23.	Maximum 2,400.	Minimum 2.3													
		- piq -		-		^	m		ч	55	CJ	9	0	00	~	CI.				
		Hordnass os CoCO ₃	E dd	1	5		m		-7	2	-7	0	CV .	6	-7	m				
		No Se Of D	E GG	70	272		27		-7	%	1,3	77	53	38	54	28				
-	-	2 0 E	1	36	, ×	S .	38		37	31	杰	33	33	8	37	34				
-	Totol	solids in ppm				_							78f 798							
		Other constituents											POL D.fr							
		Silico (SiO ₂)											27							
	lion	Boron (B)		0.3	C .	3	5		77	7	24	0.2	0.1	ी	ि	2.0				
1	par million	Fluo-											0 0 0							
(00)		trote (NOL)	2										0.7							
	equivolants	Chlo-		57	14	0.39	0.34		14 0.39	0.12	0.34	9.5	0.17	0.20	120	7.8				
	Ē	Sul - fote (SO.)											0.21							
	Mineral constituents	Brcar- bonata (HCO-)		27	21 15	1010	17.0 0.77		09.0	26	177	520	33	35.0	50.62	01:10				
	ral cons					00.0	50.0		00.0	00°5	000	- 8	00.0	00.0	00.0	00.0				
	Mine	olos- Sium (K)		-10	-	.10	210		210	- Ac	11.	1-	10.0	ole	515	210.		_		
		Sodium Polos- Corbon-	+	118	2 = 3	10.0	0.52		0.52	3.3	0.44	9.6	0.30	2.36	0.52	0.61				
		Mogne- Sium (Mg)											0.22							
		Colcium N	+	Ĕ	1	1.00	0.0		0.89	5.51	.28*.0	3.84	0.36	3.77	0.1	1.16				
ŀ		£					7:5		7.4 7.8	7.5	1	3.1	7.7	7	7.7	200			_	\dashv
	pacific	(micromhos pH		229	179	2	151		156	85	148	138	8	123	158	1.6				
-	-	gan (m		88	101	1	102		102	102	104	101	102	101	100	14.0	_			-
		Oissolved osygan		-7, ≪	10.1		11.8		12.0	11.4	11.2	10.9	10.6	9.6	8.1	11.7				-
1		e o ii		65	ō		877		1.77	3	尽	53	56	79	8	18				
		Dischorgs Temp		17	133	(est.)	209 (est.)		75	923	275	1,35	:	350	70 (est.)	(est,)	DRY			
		ond time sampled P.S.T	1060	10/1	17/11	1100	12/1	1967	1310	2/4	3/1	1400	5/3	(/)	7/12	8/5	3/15			

Laboratory pH. a Field pH

c Sum of colcium and magnesium in epm.

James colorum and magnesian in spin.

In or (2, 1), and hexavolent chromium (Cl. 1), reported here os 0.0 except as shown in the colorum and magnesian (As), reported here os 0.0 except as shown in the colorum and the color Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

g Gravimetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health, Service

i Mineral analyses made by United States Geological Survey, Quality of Water Blanch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR), United States Geological Survey, Quality of Many Las Analyses, Department of Public Membrial States Collection (MAD); Las Analyses, Department of Public Health (LADPH); City of Lang Beach, Department of Many Collection Department of Water Resources (DWR); as analyses.

ANALYSES OF SUHFACE WATER
CERTIFICAL VALLEY HOLLON (NO. 1)
MONFILHENE NALLEY NELLON (NO. 1)

Interior, Burans of Rectomation (USBR), United States Public Health Service (USPHS). Son Bernardino County Flood wheek (LADMP), City of Los Angeles, Deportment of Public Health (LADPH), City of Long Bench, Deportment of unificated

ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (NO. 5) TABLE D-3

MOKELUANE RIVER BELOW COSUMMES RIVER (STA. 23b)

	Hordness bid Coliformh Anolyzed os COCO3 1137 MPN/mi by i											
	Colifor MPN/											
	100											
	Cocos	Total N.C.										
_	S I	Tota										
-	solids sod -	E		33		98	16	17	72	54	80	
Toto	solve solve	e d d		100		25	100	72	88	717	8	
	i i	Other constituents										
lei	Boron Silico	(F) (B) (SiO ₂)										
ar ar	-onl	(F)										
ports per million	- I	(NO ₃)										
ports per milition	- olu	(CI)		14.3		3.6	2.1	8	5.7	8.5	2.7	
		(SO ₂)		<i>4</i> 1		ml	cil	αI	17	σÌ	v,	
uents	or- SL	(HCO ₃) (S										
Mineral constituents in	on- Bic	03) (H(
Mineral	Ss- Cort	(K) (CO ₃) (
	Pot	(X)					_					
	Sodii	(NO)		0.4		3.0	3.5	1.6	4.	9.4		
	Mogn	(Ca) Sum (Mg)			_							
-	1 8	2										
	C scharge Temp Dissolved conductonce pH (micrombs PH cayge)	G 25 C		52		¹ 43	76	41	87	171	62	
	Dissolved	ppm %Sot										
	Temp In OF			3		1,5	26	65	79	92	٥	
	Date ond 'me	P S T	1962	11/13	1963	1/14	3/11	6/13	7/12	8/12	9/15 1520	

Loboratory pH

Sum of calcium and magnesium in epm

c. Sum of colcum and magnessum in epm.
d. Iron (Fe), orientic (As), created (Fe), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr*6), reported here as $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents. Gravimetric determination

Minetal contyses made by United States Geological Staves, Quality of Water Branch (USGS), United States Department of the Interior, Sucresion (USBR); United States Public Health Service (USPRS); San Benardino County Flood h Amuel median and range, respectively. Calculated from analyses of duplicate monthly samples made by Coliforna Department of Public Health, Division of Lobaratories, or United States Public Health Sevice.

MOKELUMNE RIVER BELOW GEORGIANA SLOUGH (STA. 23c) CENTRAL VALLEY REGION (NO. 5)

		Herdness bid - Caliform" Analyzed os CoCO ₃ ify MPN/mi by i Total N.C. ppm ppm	5	Mago							
	2	MPN/mi									
	Tur-	bid - - by n ppm									
		Hordnsss os CoCO ₃ Totol N.C. ppm ppm									
		Total Ppm						82	27.	53	E E
-	Per-	S od -					33				
L	Total	solved sod - solids lum in ppm III	,	Ž		136	152	148	132	132	041
		Other constituents									
	ou	Boran Sitica (B) (SiO ₂)									
nothin	r mills	Fluo-B									
ports per million	squivalents per million	Ni- trote (NO ₃)									
por	squival	Chlo- rids (Cl)		6.6		al	13	13	9.8	리	13
	e.	Sul - fors (SO ₄)									
	stifuents	Bicar- bonats (HCO ₃)									
	Mineral constituents	orbon- ors (CO ₃)									
	Min	Sodium Potos- (Na) (K)									
		Sodium (No)		9		7	15	의	al	9.7	15
		Caleium Magne-									
		Caleium (Ca)									
	Spacific	Dissolved conductorce or oxygen (micromhos ph		152		181	211	1B9	174	180	908
		Dissolved coaygan									
		Ts ap		8		94	75	88	77	7.	8
		Discharge Tamp									
		Dote and tims sompled P S.T	1962	11/13	1963	1/14	3/11	6/13	7/12	8/12	9/16

b Laboratory pH.

c. Sum of calcum and magnesium in epm. (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavolent chromium (Cr⁺⁰), reparted here as 0.0 except as shawn. d. Iran (Fe), aluminum (A1), arsenic (As), capper (Cu), lead (Pb), manganese (Mn), area (Zn), reparted here as 0.00 except as shawn.

e Derived from conductivity vs TDS curves

9 Grovimetric detarmination.

Determined by addition of analyzed constituents

I Mineral analyses mode by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Survey and Power (USBH), United States Department of Water and Power (LADHP), City of Las Angeles Department of Water and Power (LADHP), City of Las Angeles Department of Water Branch (LBDHP), City of Las Angeles Department of Water Resources (DWR), as indicated. h Annual median and range, respectively. Colculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service

ANALYSES OF SURFACE WATER CHITCHAL VALLEY HENDER (HD. 2)

OF SURFACE WATER TABLE D-3 ANALYSES

CENTRAL VALLEY REGION (NO. 5)

Analyzed by 1

Coliform^h MPN/mi

Hordness bid - Co

Per-

Totol N C

USGB

Median 5. Maximum 2400°

0

9 Π 77 27 10 14 8 16

33 53 53 25 94 25

m

0 0 0 (V) 0

Minimum 0.23

_+

54 10 55 9

0

22 98 2 53

12

-7

m

0.0

0.00 ABS POL 0.00

AS.

6.6

0.0

0.0

0.0

2.8

3.0

0.7

2.4

0.5

3.8

6.8

32

g

9.8

0

10 27

Total das-solved solids 25€ 52 € 25 e 28 e 55 c 59 c o †7∂ 33 % Other constituents 0.05 Q, Silica (SiO₂) 7 Boron (B) 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 per million ports per million 0.01 234) equivolents frote (NO₃) MOKELUMNE RIVER NEAR LANCHA PLANA (STA. Chlo-ride (CI) 2.2 2.2 2.9 1.4 2.4 1.0 Sul -fote (SO₆) 5 Mineral constituents Bicor-bongte (HCO₃) 0.16 15 14 15 20 14 Corbon-ate (CO₃) 0.00 000 000 000 000 0.00 00.0 0.00 Potos-sium (K) 0.0 Sodium (No) 2.1 2.0 2.2 3.9 1.9 Mogne-sium (Mg) 0.0 Colcium (Co) 0,19 0.20 0.22 0.25 0.24 0.20 0.27 5.6 0.25 6.9 2.0 6.9 6.9 7.1 6.9 7.5 6.8 03 14 1:2 Ę Specific conductance (micromhos of 25°C) 22 35 39 2 54 33 30 걾 31 %Sot 102 Dissolved 100 108 106 117 107 107 66 96 66 mad

11.9 11.6 11.3 11.9 11.1 10.5

4250

2/4 3/11 6/4

834 495

11.1

12/6

10.0

eg. 53 20 51 64 24 eg. 99 61 59

8.6

.0

337 318 311 635

1962

Temp in OF

Dischorge I

Date and time sompled P.S.T.

Loborotory pH

Sum of calcium and magnesium in epm.

Iran (Fe), aluminum (At), arsenic (As), capper (Cu), lead (Pb),

Derived from canductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination.

Mineal analyses made by United States Geological Survey, Quality of Water Branch (USGS); Unred States Department of the Interior, Bureau of Reclamation (USBR); Unred States Public Headth Service (USPHS); San Beneatine Carleton (MND), Los Angeles Department of Water and Power (LADMP); City of Los Angeles, Department of Public Headth (LADPH); City of Long Beach, Department of Public Headth (LADPH); City of Long Beach, Department of Public Headth (LADPH); City of Long Beach, Department of Public Headth (LADPH); City of Long Beach, Department of Public Headth (LADPH); City of Long Beach, Department of Public Headth (LADPH); City of Long Beach, Department of Public Headth (LADPH); City of Long Beach, Department of Public Headth (LADPH); City of Long Beach, Department of Public Headth (LADPH); City of Long Beach, Department of Public Headth (LADPH); Terminal Testing Lobardones, Inc. (TTL); or California Department of Water Resources (DWR); or indicated h Annual median and range, respectively. Colculated from analyses of dupticate manthly samples made by California Department of Public Health, Division of Leboratories, or United States Public Health, Service.

except as shown

0.00

manganese (IAn), zinc (Zn), and hexavalent chramium (Cr + 6), reparted here as

MOKELUMNE RIVER AT WOODBHIDGE (STA. 23) CENTRAL VALLEY REGION (NO. 5)

Analyzed by 1 USGS Hordness bid-Coliform os CoCOs nopm MPN/mi Median 23. Minim Max1m 2400. 8 Ö 2 2 00 œ Totol N C 0 0 -0 0 0 20 35 77 Cent Cont 22 61 8 28 56 8 Total dis-solved in ppm 245 56. 28 % 29 3 20 92 2/2 90 .92 ABS 0.0 0.0 Other constituents AS 0.00 ABE O AS 0.01 PO. 0.05 8.9 (S:0g) 12 Boron (B) 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 equivalents per million ports per million 0.0 0.1 Fluo-ride (F) 0.0 rote (NO.) 0.0 2.5 0.03 2.0 0.05 0.0 0.10 Sul -fote (SO₆) Mineral constituents 0.13 20,41 92.0 97.50 1.8 97.50 92.50 15 Carbon-ate (CO_S) 00.0 000 000 0.0 010 0.00 00.0 0.00 Potos-(X) 0.0 0.0 Sodium (No) 2.1 3.4 0.03 2.4 0.0 Magne-stum (Ma) 0.00 Calcium (Ca) 0.20 5.0 0.26 0,24 0.27 0.28 0.64 0.28 7:0 11. 012 7:0 7:0 7:1 315 6.9 1:2 7:5 113 Ę Specific conductance (micromhos of 25°C) 37 36 9 61. 91 \$ 35 32 ppm %Sot 102 Dissolved 66 96 35 98 97 66 92 97 11.0 10.8 6.6 4.6 Olechorge Temp 71 25 10 20 55 99 1,820 2170 762 00/ 114 23.2 92 1,1 ond time compled 6/4 1963 2/5 3/13 1515 1/7

Laboratory pH.

Sum of calcium and magnasium in epm. Iron (Fe), alumnum (A1), arsanic (As), cappar (Cu), Icod (Pb), mangnnase (Un), zinc (Zn), and hexavalent chromium (Cr⁻¹⁰), reported hera as 0.00 Sum of calcium and magnosium in epm.

excapt as shown

Darived from conductivity vs TDS curves

Determined by addition of onolyzed constituents Gravimetric determination.

Mineral analyses, made by United States Geological Survey, Ouality of Water Branch (USGS), United States Opparment of the Interior, Survey and Reclamation (USBR), United States Positive of Southern Caldonno (WMO), Los Angeless Department of Water and Power (LADWP), City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); Terminal Testing Laboratories, Inc. (TIL), or Caldonna Department of Water Resources, (DWR), as indicated Amuel median and range, respectively. Colculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service

ANALYSES OF SURFACE WATER

PERCHASI VALLIST PRECION (NO.5)

CENTRAL VALLEY REGION (NO.5)

	_	_																	
			Andlyzed by i			USGS													
		4	as CaCO ₃ ity MPN/mt			Median 50.	Maximum 7000.	Minimum 6.2											
		T or -	- pid - you			15	15	6		6	8	30	30	20	50	25	200	20	
			aco ₃	Tatal N.C. ppm ppm		13	96	34		64	9	19	19	77	9	21	4	55	
						22	170	100		Ť	54	138	92	99	92	62	70	178	
		Per-	sod 1			53	53	51		53	89	52	94	775	01	9	37	67	
		Total	solids	mdd ui		220	437°	564e		348e	108e	349e	170e	$\frac{147}{1506}^{\ell}$	80 e	131e	130e	419 [£]	
			Other coostituents											PO _{1, 0.20}				AS 0.01 ABS 0.0 PO ₄ 0.35	
			Silica	12010										174				8	
		ign	Boron	n)		0.1	0.2	0.2		0.3	0.2	0.3	0.1	0.1	0.0	0.1	0.1	0.1	
(70	million	per mill	Fluo-											0.0				0.01	
STA, 10	ports per million	equivolents per millian	- N	(NO3)										0.0				0.0	
FERRY	۵	equiv	Chlo-	(CI)		1.64	3.64	72 2.03		3.61	23	90	38	30	16	27	22 0.62	3.55	
N COURT			Sul											23				54	
CLIFTO		striueni	Bicar-	(HCO3)		95	139	80 1.31		104	43	87	70	67	39	1.00	81 1.33	150	
OLD RIVER AT CLIFTON COURT FERRY (STA. 104)	1		Carban	(co)		000	0.00	0.00		00,00	0.00	0.00	0.00	0.00	0.00	000	0.0	000	
OLD R	M	E I	Potas-	(X)										1.5				3.6	
			Sodium	(DN)		1,7	3.87	49		3.00	0.83	2.96	30	23	0.52	19 0.83	19	3.52	
			Magne-	(Mg)										6.9				1,51	
			Calcium	(00)		1.82	3.40°	2.01°		2.68€	0.90	2.76°	1.52°	0.75	0.77c	1.24c	1.410	41 2.05	
			E .	a Lo		7.6	7.5	7.5		7.3	7.1	7.3	7:5	7.4	7.1	7.3	7.3	7.7	
		Specific	(micramhas pH			387	768	1991		611	189	419	539	549	140	230	228	749	
				%Sot		88	98	70		8	81	85	914	66	16	18	48	66	
			Dissolved	шаа		7.9	4.6	7.8		9.3	9.6	8.8	9.6	9.3	9.6	7.3	7.1	4.8	
	-		Ten P P			69	62	51		9	55	57	R	69	69	73	75	75	
			Cischarge Temp		Tidal														
			and time	P. SO	1962	10/4	11/13	12/11	1963	1/7	2/6 1445	3/13	4/10	5/7	6/5	0060	8/7	9/10	

Laboratory pH.

c. Sum of calcium and magnesium in epm. deper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chramium (Cr*6), reparted hate as 0.0 except as shown. d. Iron (Fe), aluminum (Al), arsenic (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chramium (Al), arsenic (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chramium (Al), arsenic (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chramium (Al), arsenic (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chramium (Al), arsenic (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chramium (Al), are provided that the contract christian (Cramium (Cramium (Al), are provided that the contract christian (Cramium (Cr

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination

h Annol median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

International States Geological Survey, Quality of Water Branch, (UGS), United States Department of Internative States California States States States States States States (USPHS), State Branch and Properties (USPHS), States States States States States States S

OLD RIVER AT HOLLAND TRACT (STA. 108a) CENTRAL VALLEY REGION (NO. 5)

		nolyzed by 3		USBR												
	4	Hordness bid - Coliform Analyzed es CoCO ₃ ify MPN/mi by i Totol N C ppm Ppm														
	T or	S E G C														
		Mordnase es CoCO ₃ Tofol N C ppm ppm														
	Per	in and in		3	Ţ,			Çļ	£.4	177	94	27	35	었	39	35
	Totol	solids rum		168	228	276		376	272	568	292	192	144	148	196	508
		Other constituents														
	Illion	Boron Silico (B) (SiO ₂)							-							
multip	per m	Fluo- ride (F)														
milian sec atom	equivalents per million	Ni- trate (NO _S)														
	9	Chlo- ride (CI)		36	4.5	19		87	26	8	8	39	81	18	31	35
	e .	Sul - fate (SO ₄)														
	constituents	Bicor- bonote (HCO ₃)														
	Mineral cor	Corbon-														
	M	Potas- sum (K)														
		Sodium (No)		81	31			57	41	04	94	88	51	14	23	56
		Magne- s:um (Mg)														
		Calcium (Ca)														
	o di con	I.		276	331	1,50		589	410	421	1939	288	163	189	257	323
	0	Dissolved conductone oxygen (micrombos ot 25°C)														
		Discharge Temp in cfs in oF		63	93	₹.		12.17	55	65	K.	29	70	7.5	75	
		Dote ond time P.S.T	1962	10/16	11/14	12/17	1963	1/15	2/11	3/11	1120	5/13	6/11	7/9	8/12	9/19

Field pH

Annual median and range, respectively. Calculated from analyses of duplicate manihly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service. Market States States States States States Branch (USGS), United States Department of the Interior, Surieau of Reclamation (USBR), United States Public Health, Service (USPHS), Son Bernardino County Flood Control District (SECFCD), Metropoliton Water California (WHD), Las Angeles, Department of Water and Power (LADMP), City of Las Angeles, Department of Public Health (LBDPH); City of Lang Beach, Department of Public Health (LBDPH), Terminal Testing Laboratories, Inc. (TIL) or California Department of Water Resources (DWR), as indicated.

ANALYSES OF SURFACE WATER CHRESAL VALLEY HEGION (NO. 5)

Laborotory pH

Sum of colcium and magnesium in epm

Sum of colcium and magnessium in epm 100 foot (Pb), manganese (Mn), zinc (Zn), and hexavolent chromium (Cr⁻¹), reported here as 0.00 except as shown from (Fe), aluminum (Al), arsence (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavolent chromium (Al), arsence (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavolent chromium (Cr⁻¹), reported here as 0.00

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Committee of the Committee of Committee of

CENTRAL VALLEY REGION (NO. 5)

			_						_									_	
			os CoCO3 114 MPN/ml by i			USCS													
			Coliform" MPN/mi			Median 50.	Maximum >7000.	Minimum 0.62											
		Tur	- piq -			98	15	90		01	50	0 7	8	55	25	57	560	25	
			oco3	Total N C ppm ppm		m	13	18		75	87	*	917	15	15	60	-	m	
						82	88	66		124	165	96	115	69	75	9	47	73	
		9	Sod			24	1,2	77		43	m -#	77 2	7-7	39	017	34	35	£43	
		Totol	solved solds	in ppm		175 e	184 €	203 ¢		275 e	362 e	213 e	270 e	141 f	115 e	105 e	128 6	158 f	
			O year											AS 0.00 ABS 0.0 PO ₁ 0.20				AS 0.01 ABS 0.0 PO ₄ 0.00	
	١,		Siico	(S)				.1		.1		.1	.1	-1			.1	15	
	no	million	Boron			0.0	0.1	0.1		0.1	0.2	0.1	0.1	0.0	0.0	0.2	0.1	0.1	
(2)	r milli	per	F100-											0.1				0.03	
OLD RIVER AT MANDEVILLE ISLAND (STA. 112)	ports per million	equivolents	2											0.03				3.2	
LAND		edn	Chlo-	(C)		37	38	1.27		67 1.89	88	1.30	1.81	27	23	16	21	30	
VILLE IS		u .	- Jus											0.52				16	
T MANOE		CONSTITUENTS	- Bicor-			36	92	94		1.39	95	74	1.38	61 1.00	βħ 0.79	64 1.05	1.28	85	
RIVER A	Manage	18701 CO	Corbon	(CO ₃)		0.00	0.00	0.00		0,00	0.00	0.00	00.0	00.0	0.00	0.00	0.00	00.00	
OLD	M	-	Potos-	3										0.00				1.7	
			Sodium			33	29	34		43	2.52	35	2.00	20 0.87	17 0.74	1 ¹ 4 0.61	0.78	26	
			Mogne	(Mg)										6.8				8.8	
			Colcium	(60)		1.64	1.77 9	1.90		2.48	3.30	189	2.30	15 0.75	1.09	1.20	1.48	15	
			ī,	110		7.5	7.5	7.3		7.3	7.2	7.3	7.3	7:3	7.5	8.1	7.7	7.8	
		Specific	(micromhos pH			302	317	350		747	429	367	994	237	198	181	221	267	
			en d	%Sot		93	ま	87		82	87	35	89	81	986	97	93	101	
			Dissoived	mdd		8.2	9.3	9.5		9.2	9.6	9.5	9+1	7.6	9.7	8.3	8.0	-7 * *	
			Temp in oF			71	19	53		74	52	57	92	69	7	1/2	1/2	77	
			Discharge Temp		Tidal														
			ond time	PST	1962	10/2	11/13	12/5	1963	1/7	2/5	3/15	1000	5/7	6/4 1035	7/10	8/5	9/10	

Loborotory pH.

c. Sum of Social and magnessium in term.
d. Iron (Fe), oluminum (A1), assentic (A8), aspeter (CU), lead (Pb), mangenese (Mn), zinc (Zn), and hexavalent chromium (G⁺⁶), reported here as $\frac{0.0}{0.00}$ except as shown. c Sym of calcium and magnesium in epm

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

g Grovimetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by Caldonia Opparment of Public Health, Division of Labordonies, or United Stones Public Health Service.

| Maneral analyses made by United States Geological Survey, Quality of Water Branch (USS), United States Opportment of Interior, Europea of Reclamation (USBR); United States Geological Survey, Quality of Water Branch Control States of Service (USPHS); San Bernadina County Flood
| Control Division States of Service (USPHS); San Bernadina County Flood
| Control Division States of Service (USPHS); San Bernadina County Flood
| Public Health (LADPH), City of Long Beach, Department of Floor
| Floor County Service (USPHS); San Beach, Department of Floor
| Floor County Service (USPHS); San Beach, Department of Floor
| Floor County Service (USPHS); San Beach, Department of Floor
| Floor County Service (USPHS); San Beach, Department of Floor
| Floor County Service (USPHS); San Beach, Department of Floor
| Floor County Service (USPHS); San Beach, Department of Floor
| Floor County Service (USPHS); San Beach, Department of Floor
| Floor County Service (USPHS); San Beach, Department of Floor
| Floor County Service (USPHS); San Beach, Department of Floor
| Floor County Service (USPHS); San Beach, Department of Floor
| Floor County Service (USPHS); San Beach, Department of Floor
| Floor County Service (USPHS); San Beach, Department of Floor
| Floor County Service (USPHS); San Beach, Department of Floor
| Floor County Service (USPHS); San Beach, Department of Floor
| Floor County Service (USPHS); San Beach, Department of Floor
| Floor County Service (USPHS); San Beach, Department of Floor
| Floor County Service (USPHS); San Beach, Department of Floor
| Floor County Service (USPHS); San Beach, Department of Floor
| Floor County Service (USPHS); San Beach, Department of Floor
| Floor County Service (USPHS); San Beach, Department of Floor
| Floor County Service (USPHS); San Beach, Department of Floor
| Floor County Service (USP

CENTRAL VALLEY REGION (NO. 5)

Anolyzad by i USGS Coliformh MPN/mi Max1mum >7000. Median 130. Minimum 2.3 P d d 190 20 15 15 15 200 15 9 35 20 8 Hordness os CaCO₃ Total N.C. ppm ppm 949 75 80 59 51 35 16 18 2 -6 5 1^{hh} 121 99 118 87 22 97 8 92 16 96 Cent Cent 2 12 51 20 9 51 17 45 117 34 35 2,42 Tatol dis-solved solids in ppm 386 e 202 e 125e 312° 288 € 229 e 206 351 AS 0.02 ABS 0.0 PO1 0.15 Other constituents 0.20 PO. Sifica (SiO₂) 16 Boron (B) 0.2 0.2 0.0 4.0 0.2 0.2 0.0 0.0 0.2 0.2 equivalents per million ports per million 0.1 0.0 OLD RIVER AT ORWOOD BRIDGE (STA. 108) Proje (NOs) 2.5 2.4 36 21 30 88 29 1.27 2.00 55 17 Chlo-19 93.00 Sul -fots (SO₄) 5 Mineral constituents Bicar-banate (HCO₃) 34 92 82 11.11 0.66 51 78 87 96 1.97 96 1.61 Carbon-att (CO₃) 0.0 0.00 0.00 000 000 0.00 0.00 000 000 0.0 0.0 Potas-Sium (K) 0.04 1.8 28 Sodium (No) 26 1.83 2.96 2.52 3.18 36 39 13 0.70 118 Magne-Sium (Mg) 6.3 7.8 Calcium (Ca) 1.730 16 0001 2,42 1.92 1.36 1.45 1.81 3.20 2.36 0.81 2.88 6.7 7.3 F alt 5.5 7.7 7:5 11: 5.5 7:3 11: Specific conductonce (micramhos at 25°C) 367 625 955 687 359 512 108 283 150 198 223 274 %Sot Dissolved 85 80 83 82 1/2 62 178 78 76 88 8 Edd 6.8 9.8 9.5 8.1 6.8 8.1 8.5 7.5 8.2 7.9 Oischorge Temp 72 22 15 69 8 51 9 gg, 29 92 62 Tidal Date and time sampled P S T 1145 1963 1/8 1045 2/6 1155 3/13 5/13 6/5 1/10

Sum of calcium and magnesium in epm. b Labaratory pH

Sum of colcium and magnessum in epm.

Iron (Fe), aluminum (A1), reported here as $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents

Gravimetric determination.

Mineral analyses made by United States Geological Survey, Duality of Water Branch (USGS), United States Department of the Interior, Survey of Reclammin (USBR), United States Department of Water District (SBCFCD), Minerapoliton Water District of Southern California (WAD), Las Angeles Department of Water ond Power (LADMP), City of Las Angeles, Department of Public Health (LADMP), City of Lang Beach, Department of Public Health (LADMP), Terminal Testing Loboratories, Inc. (TTL), or California Department of Water Resources (DWR), or indicated h Annual median and range, respectively. Calculated from analyses of displicate manthly samples made by California Department of Public Health, Division of Laboratorieses, or United States Public Health Service.

ANALYSES OF SURFACE WATER GENTRAL VALUET HEGION (HG. -)

CENTRAL VALLEY REGION (NO. 5)

[i sed					_											
		Analy			USGE		-											
		os CoCOs 119 MPN/ml by 1			Median 230.	Maximum 2400.	Minimum 13.											
		bid - ly			7	9	50		10	100	9	15	52	25	8	210	8	
		0000	S g		38	93	36		19	10	22	28	7	00	99	115	81	
		Horo Pos O	Total		225	192	116		156	64	187	108	52	€ 4	172	598	236	
	ć	Sod			53	53	51		51	84	55	84	39	24	64	20	8	
	Totol	solved sod -	mag ni		534 e	483 e	279°		383 °	117 e	1478 e	546 e	115 ^f 125 ⁸	89 e	a 904	617 °	562 f	
		Other conceptuants	- 1										PO _{l,} 0.20				AS 0.02 ABS 0.0 PO ₁ 0.55	
		Sirco	(20(5)										57				23	
Ì	lion	5	(B)		0.5	0.2	0.1		4.0	0.1	7.0	0.1	0.1	0.0	0.3	D.4	0.1	
	equivolents per million	Fluo-	(F)										0.0				0.01	
	volents per	ž	(NO ₃)										2.3				0.03	
(STA.	equiv	Chło	(0)		164	3.98	2.29		3.22	26 0.73	3.72	57 1.61	19	19	3.36	208	174	
TRACY	<u>e</u>	- los	(\$0\$)										16				76	
OLD RIVER NEAR TRACY (STA. 103)	stituents	Bicar	(HCO ₃)		2.92	164	97		1.90	4.8	137	97	55	43	2.11	3.02	3.10	
OLD RI	Mineral constituents	Corbon-	(CO ₃)		3 0.10	0.0	0.0		0.00	00.00	0.00	0000	0.00	0.00	0.00	0.00	00.0	
	N.	Polos-	(3)										0.05				4.8	
		Sadium	(Na)		115	100	55		3.26	21 0.91	104	4.6 2.00	16	14	3.26	121	110	
Ì		Magne-	(Kg)										5.4				25	
		Colcium	(00)		4.50 0	3.85	2.31		3,12	0.8°	3.74 c	2.17	0.60	0.85 9	3.45	5.33 0	5.69	
	_	T o	0,18		4.8	7.5	7.3		7.3	7.1	7.7	7.3	7.8	7.1	8.0	8.2	8.1	
	9	Conductonce	3		096	869	505		889	210	860	244	183	160	731	1110	1000	
		Orssolved	% Sot		119	55	5 7		7.1	92	85	72	98	48	ま	70	117	
		Orsso	mdd		10.9	9.6	5.1		4.6	8.0	8.9	7.2	8.7	8.0	8.2	7.2	9.8	
		Temp in OF	-		98	65	51		1,7	95	95	99	65	79	72	1/2	76	
		Crschorge Temp		Tidal														
		Date and time some	PST	1962	10/4	11/14	12/11	1963	1/7	2/7	3/12	1200	5/13	6/5	7/9	8/7	9/10	

b Loboratory pH

c Sum of colcium and magnesium in epm.

c. Sum at colculum and imagessum in repin.
d. Iron (Fe), a luminum (A1), areatic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chronium (Cr*6), reported here as $\frac{0.0}{0.00}$ except as shown. Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents. Grovimetric, determination

h Annial makin and onge, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Lebanatories, at United States Dublic Health Service.

Anneal analyses made by United States Geological Survey, Duckits of Water Ducks States Geological Survey, Duckits of Water Ducks States Geological Survey (Ducks): Las Anageise, Department of Water States (SPRM): States Control Ducks States (SPRM): City of Long Breath, Department of Public Health (LADPH): City of Long Breath, Department of Water Resources (DAR): as indicated.

CENTRAL VALLEY REGION (NO.

		by §															
	£	Hardness bid - Coliform" Analyzed os CoCO ₅ 11y MPN/mi by 1 Tatol N C Ppm ppm															
-	į	MPP MPP	_			_		~			2	Q.	-	C)			_
+		S O DE		0	0			0	-	-	-	-	-	_	<u>_</u>		
		Hardness os CoCO _S Tatol N.C ppm ppm		-				7.1	-	2)	'n	٨	#)	4.9	53	22	
	P 97	sad -		*	25	å		33.	87	Ş	4	31	.7	Ž,	34	35	
	Total	spilos spilos mdd ui										11.1				161g 161g	
		Other constituents		Tit. w. Li.								PO, .11				PO ₁ 1 J At 2.100 ABS 0 J	
		Silico (SiO ₂)										27				H	
	lion	Boron (B)		7	7	3		Sil	~!	-:	긔		7	7	5	7	
(Tr. no.)	per million	Fluo- ride (F)		-								0. E				0.01	
Dir. M	equivolents	Ni- trate (NO _S)										1.5				5-1	
SLOFF (*	2	Chlo- ride (CI)		97	100	90.		110	= 17.	11	1.5	5:0	7.8 50	12	0.31	21/10	
PATHE CREEK NEAR IGH BLOFF (TAL DOP)	ē	Sul - fate (SO ₄)										0.2))0.	
POLLEY NE	afifuanti	Bicar- bonata (HCO ₃)		11. K	11:3	1.05		1	21.11	* 12	75.	18 m	200	1.04	0	11.00	
AIRE C	Minardi constituants	Potas- Corbon- sum ote (K) (CO ₃)		101.	Of.	9.		1 .	1.	9 6	0.00.0	00.5	000.1	0.40	5 10		
	Mina	Potas- Sium (K)										7				1.1	
		(No)		1.	5. F.	5.1		17	1	11/2	c:\.	z .	100	53.0	10,0	11.	
		Calcium Magne-										洁					
		(Ca)			E	[-		E	E	2.34	1.1.0	2 5	1:	1	1.1		
		H =		13.5	1	30		17:	11:	N.	7	317	1	3	1.	1.	
	Specific	Conductance pH (micrombos at 25°C)		23,	. 51	-		:11:	13	192	9/	145	1,3	1,78	3	55	
-		lved (n		2	8	1		10',	707	114	901	1001	È	3	7	7.	
		Dissolved axygen ppm //oSat		-		:		7.	÷ ;	1.9		?		9° H	± 1		
-		Ta no F		è	~			2	25	57	2	,	5	72	5	3	
		Dischorge Tamp in cfs in of		1		è		l.	0	_	2	9	5	**	15	1,7	
		Dote ond time sempled P S.T	1 **	4.00	11/2	30	1 16.	1 1	2/2	3/20	1.11	51.5	5 - 2	1/2	(190	25	

Loboratory pH o Field pH

Sum of colesum and magnassum in apm.

Sum of cocicum and magnessium in opm.

Lond (Fe), aluminum (A), orsented (As), copper (Cu), load (Pb), manganase (Mn), zinc (Zn), and hexavalent chromium (Cr^{1,6}), reported here as 0.00
0.00

Desived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Grovimetric determination.

Mineral analyses made by United States Geological Survey, Quality of Water Branch (USSS), United States Department of the Interior, Bureau of Reclamation (USRR), United States Public Health Service (USPHS), Son Benardina Cauthy Flood Cantra District of Southern Caldonia (Mal); Los Angeles Department of Water and Power (LADMP), City of Las Angeles, Department of Public Health (LADMP); Terminal Testing Lebarotories, Inc. (TIL); or Caldonia Department of Water Resources (DWR); or indicated Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Lebaratores, or United States Public Health Service

ANALYSES OF SURFACE WATER

CENTRAL VALLEY REGION (NO

TIT RIVER NEAR BIEBER (STA. 17e)

_																	
		Hordness bid - Coliform Analyzed os CaCO ₃ liy MPN/ml by i Total N C ppm ppm	nsgs														
	4	MPN/mi															
ľ	- L	- piq		99	6	10		15	700	S	χ. π.	ρ ₄ 0	707	4	m	-	
		SOU DE		10	0			0	-		0	0	70	-	0	-	
		Hordr Os Co Totol ppm		55	78	51		111	22	62	56	58	77	10%	93		
ľ	Pari	L pox		37	38	4		37	37	37	eg CV	28	200	φ <u>γ</u>	35	Š	
	Totol	solved solids in pom										114°F 134°E				172 1628	
		Other constituents										PU, Day	Tot. alk. 153		Tot. wlk. 158	Tot. alk. $\frac{144}{100}$ PO ₄ .10 As $\frac{5.1}{0.00}$ ABS	
		Silico (SiO ₂)										22				7	
	ion	Boron (B)		3	3	3		010	0:0	0.0	0.0	0:0	-	7.0	0.0	0.0	
	aquivolents per million	Fluo- ride (F)										0.00				10.5	
	orts per	hrote (NO ₃)										0.02				4.0	
	painbe	Chio- ride (CI)		0.00	7.5	1.8		0.50	6.9	7.0	2.0	2.5	2.4 0.07	4.6	3.8	0.14	
	u	Suf - fore (SO ₄)										5.7				7.1	
	stituents	Bicor- bonote (HCO _S)		50.0	2.25	8 7		134	128	7.23	1.51	1.51	120	3.23	150	12b 2.10	
	Mineral constituents	Corbon- ote (CO ₃)		00.0	01,110	0.00		07.00	0.0	00.00	00.00	0.00	0.03	0.00	0.13	8 0.27	
	Mine	Potas-C srum (K)		-1-	- 1-	-,-			- 10	- ,-		2.0				2.0 80.0	
		Sodium (No)		0.3g	2000	1.52		100	0.87	10.0	0.50	0.48	0.61	1. in	36.0	1.83	
		Magne- sium (Mg)										13:0				9.1	
		Calcium (Co)		2110*11	E	1.020		Ē	1.50	1.5	1.12	0.70	1.54	[7]	1.3	18	
İ		x ~			-di:			: [.	1	3/2	1	7	c C	200	25 100	n in	
	Spacific	(micromhos of a 25°C)		2	2	174-1		ž.	ė,	9		r G	0	329	595	241	
		lved gen %Sot		3	-	-		95	55	93	J	100	102	115	147	151	
		Diaso		7:1	12.4	0.70		-	10.3	11.7	10.0	÷.		7	11.5	12.5	
		Temp in of		2017	2	57		₹,	44	~7	2	53	19	7	77	19	
		Dischorge Temp in cfs in PF		8,. 70	-2	7		-2	751			1,75	1.1	1.7	(e-t.)	18 (wst.)	
		ond time sompled P S.T.		11/16	11/13	21,	11	717	रे ह	4/12	11.5	5.1	1.5	7.7.	e 2	100	

* campled at Bieber Bridge.

c. Jun of backing magnesium in apm d. Inon (Fe), aluminum (AI), areance (As), capper (Cu), lead (Pb), manganese (Un), zinc (Zn), and hexavalent chromium (Cr⁺⁶), reported here as $\frac{0.0}{0.00}$ except as shown. c Sum of colorum and magnesium in epm

Derived from conductivity vs TDS curves.

b Labarotory pH. o Field pH

Determined by addition of analyzed constituents.

Gravimetric determination.

Annual median and range respectively. Colculated from analyses of duplicate monthly samples made by Collifornio Department of Public Health, Division of Loboroparies, or United States Goological Survey, Quality of Mates Bacach (USSS), United States Department of Material States Cological Survey, Quality of Mater Material States Cological Survey, Quality of Mater Associated States (Department of Material States Cological Survey, Cological Su

32505-D-B 6-61 200 SPO

CENTRAL VALLEY REGION (N. ..

		Hordness bid - Caliform Analyzed as CaCO ₃ iry MPN/mi by i Cate Company NPN/mi by i Cate Cate Cate Cate Cate Cate Cate Cate	use,														
		MPN/mi		Median2	Maxima.	Masti -											
	1	- piq - th		06 -	2	8		7	8	ē.	27	- ~	- 5	n n	10	či.	
		Hordness as CaCO ₃ Total N C		8						1			8	-			_
				6	76	٥		3	7	74	57	25	92	1.03	J.	Ē.	
		Pos -		77	07	39		-3	42	42	31	27	전	5	?	6	
	Totoi	solids in ppm										1136				21. f 22.5r	
		Other constituents										POL, 1.25 As 1.05 ABS 7.15				POL 7 A.	
		Silico (SiO ₂)										귉				-51	
	ion	5			0.0	0.1		0.0	릐	91	51	0.0	0.1	5	3	3	
	per million	Fluo- ride (F)			-							0.1				50.	
L7a)	ports per millian	rrote (NO ₃)										10°				200	
BY (STA.	DA INDE	Chlo- rids (CI)		7.4.	7.5	0.10		0.22 E.S.	7.34	1.37	2800	800 800	0.8	8.6	6.01 7.1.7	13	
TAR CAN	ē	Sul - fats (SO ₄)										6.6				9.0	
PIT RIVER HEAR CANBY (STA	stitusnis	Bicar- bonote (HCO ₃)		63	136	106		2.36	2.47	2.34	1.46	1.34	126	2.93	2.51	3.11	
PIT	Mineral constituents	Corbon- (CO ₃)		00.0	- July 1	18		00.0	00.2	00.00	00.00	00.0	0.00	0.00	0.00	00.0	
	ž	Potos- sium (K)														35	
		Sodium (No)		0.57	1.00	0.78		28	1.3	30	0.52	H	02.0	1.30	313	1.39	
		Mogne- stum (Mg)										2.6				0.60	
		Coterum (Co)		0.7	1.53	1.240		1.72	1.80°	1.80°	1.14	113	1.53	10	1.76	1.20	
		∓ <		7.2	213	7.5		7.5	₩. 1000	2 8	7.5	7.5	7.6	7.5	7.7	7.6	
		conductonce (micramhos at 25°C)		132	250	201		280	30.	307	165	146	207	313	267	325	
		gen (r		72	96	83		83	85	100	76	95	35	98	96	ま	
		Oissolvsd osygen ppm %Sot		4.8	11.5	10.0		12.0	10.4	12.3	1.01	9.1	0.0	7.8	7.4		
	-			87	3	1,5		33	77	77.77	24	52	65	19	72	61	
		Orschorge Temp		3,090	174	348		96	275	155	800	1,350	350	62	30	75	
		Dote ond time sompled P.S.T.	1967	10/16	11/19	12/17	1763	1/14	2/18	3/18	4/15	5/13	6/5	7/10	8/8	3/12 1200	

ANALYSES OF SURFACE WATER TRUTH NO VALUE OF SURFACE (PRITAL) PROPERTY OF SURFACE OF SURF

32505-0-H 6-61 200 GPO

Laboratory pH.

Sum of cacicum and magnessum in epm.

Sum of cacicum and magnessum in epm.

Iran (Fel), and hexavelent chromium (Ci⁺⁶), reparted here as 0.00 except as shown.

Iran (Fel), alumnum (Al), arsenic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavelent chromium (Ci⁺⁶), reparted here as 0.00 except as shown. Sum of calcium and magnesium in epm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Annual median and arage, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Labandourses, or United States Public Health Service.

Minead analyses made by United States Geological Survey, Quality of Water Broad-California States Department of Interiors, Survey of States Public Health Service USPHS); Son Bernardina Caunty Flood
Control District State Cological Survey, Quality of Water States Department of Water and Power (LADMP), City of Los Angeles, Department of The States of States

Control District (SECTOD), Various of the District of Southern Spottern of
CENTRAL VALLEY REGION (NO. 5)

PIT RIVER NEAR MONTGOMERY CHEEK (STA. 17)

Paris Pari																		
1 1 1 1 1 1 1 1 1 1			Analyzed by 1	USGS			·											
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			Coliform ^h MPN/ml		Median 6.2	Maximum 7,000.+	Minimum .23											
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		,	bid- ity In ppm			CI			6	15	15	69	5	0	~		~!	
1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 4, 4, 5, 5, 4, 4, 5, 5, 4, 4, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,			aco ₃ N.C.		C	0	0		0	0	0	0	0	0	С	0	0	
Thirties			Hard as C Tatol ppm		22	55	777		55	52	57	5-7	50	55	55	57	545	
Thirstory Tage District Thirstory Thir			sod -		37	53	25		30	88	55	22		70	9	ži Či		
Thirstory Tage District Thirstory Thir		Total	solids solids in ppm										97£ 998				115 ^f 103 ^g	
17,200 19, 11.5 100 98 7.4 1.10 1.1			Other constituents			ı											PO _{1, 0.15} As 0.04 ABS 0.00	
11/200 49 11-5 100 98 17-8 11-			(SiO ₂)															
17,200 49 11.5 100 98 7.2 1.0 1.		doilli			0.0	0.0	0:0		0.0	9	0.0	0.0		0.0	0.0	0.1		
17,200 49 11.5 100 98 7.2 1.20			Fluo- ride (F)										0.0				0.0	
17,200 49 11.5 100 98 7.2 1.20	10701	ports per					-						0.5				0.5	
17,200 19, 11.5 100 99 7.4 1.10 1.1	1	, inc	-		3.2	0.13	0.06		5.4	3.5	4.6	0.03	2.6	3.8	5.0	0.08	0.13	
17,200 49 11.5 100 98 7.25 10.05													0.00				3.0	
17,200 49 11.5 100 98 7.25 10.05	THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF TH	nstitusnt	Bicar- bonate (HCO ₃)		52	900	11.11		84 1.38	80	86 1.41	65	15	1.44	1.40	87	1.14	
17,200 49 11.5 100 98 7.2 11.0 11.5 100 10	WALL MANAGEMENT AND A	neral co	1 0		0.00	0.00	0.00		00.00	0.00	0.00	0.00	0.00	00.00	000	0.00	00.00	
17,200 49 11.5 100 98 7.24 7.25 17.05 1.		ž	Potos- sium (K)										0.04				1.8	
17,200 49 11.5 100 98 7.2 7.					0.37	0.44	0.30		0.48	9.3	9.6	5.6		8.0	0.48	0.17	11. 0.47	
17,200 49 11.5 100 98 7.15 1.5 1			Magna Sium (Mg)									_	3.6				6.4	
Company Comp																		
17,200 49 11.5 109 17,200 49 11.5 109 17,200 49 11.5 109 18,970 49 11.1 97 18,970 47 12.1 103 18,700 47 12.1 103 18,700 47 12.1 103 18,690 64 9.5 101 18,690 64 9.5 101 18,690 64 9.5 101 19,690 64 9.5 101 19,700 64 9.5 101 19,700 64 9.5 101 19,700 64 9.5 101 19,700 64 9.5 101 19,700 64 9.5 101 19,700 64 9.5 101 19,700 64 9.5 101 19,700 64 9.5 101 19,700 64 9.5 101 19,700 64 9.5 101 19,700 64 9.5 101 19,700 64 9.5 101 19,700 65 9.5 101 19,700 65 9.5 101 19,700 65 9.5 101 19,700 65 9.5 101 19,700 65 9.5 101 19,700 65 9.5 101 19,700 65 9.5 101 19,700 9.5 9.5 9.5 19,700			PH O		7.2	7.9	7 6		7.60	210	2.0	2.6	21.8	8 8	000	2000	6.00	
17,200 49 11.5 109 17,200 49 11.5 109 17,200 49 11.5 109 18,970 49 11.1 97 18,970 47 12.1 103 18,700 47 12.1 103 18,700 47 12.1 103 18,690 64 9.5 101 18,690 64 9.5 101 18,690 64 9.5 101 19,690 64 9.5 101 19,700 64 9.5 101 19,700 64 9.5 101 19,700 64 9.5 101 19,700 64 9.5 101 19,700 64 9.5 101 19,700 64 9.5 101 19,700 64 9.5 101 19,700 64 9.5 101 19,700 64 9.5 101 19,700 64 9.5 101 19,700 64 9.5 101 19,700 64 9.5 101 19,700 65 9.5 101 19,700 65 9.5 101 19,700 65 9.5 101 19,700 65 9.5 101 19,700 65 9.5 101 19,700 65 9.5 101 19,700 65 9.5 101 19,700 9.5 9.5 9.5 19,700			Specific conductanc (micrombo at 25°C		98	152	118		155	142	151	113	129	145	154	150	152	
Discource Temp Discourse in Cfs in Cf			lved gen %Sat		100	16	97		103	8	103	102	101	101	106	103	107	
Ductor of 1 and 1			Diseo		11.5	11.3	11.11		13.0	11.5	15.1	11.6	10.6	5.6	9.6	9.1	6.0	
	-		Teo of		_									759	99	89	19	
			Discharge in cfs		17,200	3,950	8,970		1	007,4	2,500	13,700	7,100	4,690	4,300	3,180	2,760	
				1962	10/16	11/19	12/17 0840	1963	1/11	2/18 0830	3/18	4/15 0830	5/13 0730	6/5	7/10	8/7	9/12	

a Field pH

b Laboratory pH.

c Jum of talctum and magnesium in epm. d Iran (Fe), alumnum (A1), arsenic (As), copper (Cu), lead (Pb), manganese (Um), zinc (Zn), and hexavalent chromium (Ci ¹⁶), reparted here as $\frac{0.0}{0.00}$ except as shown. c Sum of calcium and magnesium in epm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

g Gravimetric determination.

h Annual median and range, respectively, Calculated from analyses of duplicate manthly samples, made by California Department of Public Health, Division of Laboratories, or United States Dealist William Control Durated States Geological Survey, Duality of Water Branch (USSR), United States Caelogical Survey, Duality of Water Branch (USSR), United States Public Health Service (USPHS), Son Berondian West of Durated States of Durated States of Public Annual States of Public Health (LADPH), City of Las Angeles Department of Water Resources (UMR), as indicated.

Public Health (LBDPH), Termoni Carifornia, Inc. (TLL), or California Department of Water Resources (UWR), as indicated.

		Anolyzad by 1	50				_										
-		4				5											
		Hardness bid - Coliform os CoCO ₃ ity MPN/mi Tatal N C ppm som		e :	Max	Mar.											
	Į,	- piq Light							-)	l.		1	8	
		Hordnsss os CoCOs Total N C ppm ppm			-	3.		_	-	-	-	-			-	2	
-		Total Day		-	4	**		-	- 		1.		-		P.	-7.	
-	- P e.	solved sod - solids of in ppm							7-		-	1. 1. 0.	-		-	11.4	
-	To.	Solvi Solvi G ni															
		Other constituents										1				PO, A.	
		Silico (S.O ₂)										7				딕	
	Hion	_ ⊆ (-	5	3		3	1	-	=	1	-	4	3	<u>:</u>	
(8)	psr a	Fluo- rids (F)										2 -				10.1	
r (ph.	equivolants par milition	rofa (NO ₃)										j.				3	
R LIKEL	a vinga	Chig- ride (Ci)		10	10 m	1/5			0 10	7	10.7	<u>-</u> ~		٠,	1 2	100	
OCK MEA	Ē	Sul - fots (SO ₄)										-					
AUTH FO	constituents	Bicor- bonote (HCO ₃)		0"-	-3 .	3/2		1.5	21.1	2	3 -	1.5	2.0	27.0	1	13.1	
HIT RIVER, JOHNH FORK MEAR LINELY (JIN.	Minsral con	Corbon- ots (CO ₅)			1	2 2 2		0.10	100	1:		0.00	- 3	- 6	3.	- C	
17.7	N C	Polos- (K)										2 ×				4=	
		Sodium (No)			1:	5:1		100 100 100 100 100 100 100 100 100 100	77:	1.	J:	4:	: -	1	7	78.0	
		Sium (Mg)										j .				1	
		Colcium Rogner (Co) sum (Mg)		[z.	1	11:		115.0	[e ²]	h.	1-	-	-	15	ř:	7	
					: 1:	1		1	1	e.	: .	t	4:	J.	1:	7.7	
	-	Dissolva condictone ph oxygen (micrombos op 25°C)						1111	11/4	~	-	=		~	1.5/	146	
		on of		7		-		1	-			8	-	1	2	=	
				ė	-	:			1.	7	1,	:	:	;	3	-	
		Ten of			3			~	-			Š	ŝ	1		-	
		Dischorgs Temp			-2			-	2		7	*					
		Dots ond tims sompled P S.T		7,35	11	-	3	100	•	3 :	141	3,2	2000	11/2	1, 1, 1	1.1. ma ¹ .0.	

b Loborotory pH

ANALYSES OF SURFACE WATER CHEEK CHEEK MATER MOTER CHEEK MATER MOTOR (No. 5)

o Field pH

Sum of colcium and magnesium in apm.

Sum of colcium and magnessium in opm.

Ion (Fe), aluminum (Al), orsenic (As), capper (Cu), load (Pb), mangeness (Mn), zinc (Zn), and hexavilent chromium (Cr¹⁶), reported hare as 0.0 except as shawn.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents Grovimetric determination

Mineal analysis made by United Stores Goological Survey, Quality of Weter Bronch (USGS), United Stores Department of the Interact Stores of Reclamation (USBR), United Stores Public Health (LADPH), San Benach (USPH), Las Angeles, Department of Weter and Power (LADPH), City of Las Angeles, Department of Stores Stores (USPH), City of Lang Beach, Department of World Resources (DWR), as indicated h Annuel median and range, respectively. Calculated from analyses of duplicate manthly samples made by Californio Department of Public Health, Division of Lebarataries, or United States Public Health Service.

CENTRAL VALLEY REGION (NO. 5)

	_	-						_										
			Anolyzad by 1		USGS													
		,	bid - Coliform ity MPN/ml		Median 23.	Maximum 2400.	Minimum 0.06											
		J.	- bid - ty mgg u		-	CV .	٦		-	50	10	19	<i>-</i>	9	-3	C)	-01	
			Hordness as CoCOs Total N C		0	0	0		0	25	Q	21	-3	0	Q	9	5	
					157	162	162		159	218	155	196	158	150	147	148	143	
		Q.	sod -		7	ट्य	7		13	30	13	56	16	13	27	9	9	
		Total	solved solids in ppm		193°	203°	210e		199 e	350 e	202 e	290 e	203 f 200 g	193 е	186 е	182 е	169 f	
			Other constituents										AS 0.00 ABS 0.0 PO ₄ 0.00				AS 0.00 ABS 0.0	
			(S:02)										al				13	
	c	million	Baron (B)		0.0	0.2	0.2		0.2	0.7	0.1	0.5	0.1	0.2	0.1	0.2	0.2	
	milion	per m	Fluo- ride (F)										0.2				0.0	
. 81)	ports per	equivolents	No- trote (NO ₃)										0.0				2.8	
ERS (STA	۵	edniv	Chia-		6.6	7.5	13		8.0	40 1.13	9.0	19	0.31	7.0	6.0	5.1	5.2	
R WINTE		e .	Sul - fote (SO ₄)										24				0.27	
PUTAH CREEK NEAR WINTERS (STA.	0.00	STATUENT	Bicor- bonate (HCO ₃)		3.08	182	3.25		3.05	3.85	3.06	3.51	3.08	2.93	2.90	164 2.69	164 2.69	
PUTAH CF	Managar Inc.		Carbon- Gre (CO ₃)		0.07	0.27	00.00		4 0.13	0.00	0.00	0.0	0.00	2 0.07	0.00	0.13	0.07	
	M	MIL	Potos- Sium (X)										1.9				1.5	
			Sodium (No)		8.7	10	75.0 0.52		11 0.48	42	0.48	31 1.35	14 0.61	0.44	9.2	7.6	7.8	
			Magne- sium (Mg)										24				1.96	
			Calcium (Co)		3.14c	3.24°	3.240		3.13	4.35 c	3.11%	3.92 c	1.20	3.00	2.94 6	2.96	0.0	
			I 610		3.5	8.3	8.2		7.9	8.2	8.0	8.1	8.1	8.3	8.2	8.0	9.4	
		Specific	(micromhos (micromhos of 250C)		320	337	349		330	582	335	1482	352	321	309	302	306	
			% Sat		76	85	93		%	93	76	101	901	103	011	104	119	
			Dissa		10.6	9.3	10.4		11.3	7.6	11.0	11.0	7.6	6.6	11.6	10.9	11.9	
			en or		25	52	20		94	96	64	52	62	63	55	55	59	
			C schorge Temp		108	7	14		36	56	19	53	536	335	984	232	272	
			Some sime	1962	10/6	11/8	12/5	1963	1/15	2/4	3/14 0915	4/11 0915	5/14 0815	6/4 0815	7/8 0810	8/8	9/11	

b Loboratory pH.

E. Sum of solicium and analysis supper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr**), reported here as $\frac{0.0}{0.00}$ except as shown. s Sum of colcium and magnesium in epm.

e Derived from conductivity vs TDS curves.

f Determined by addition of analyzed constituents.

Mineral analyses made by United States Cealogical Survey, Quality of Water Branch (USGS): United States Department of the Interior, Bureau of Reclamation (USBR); United States Public Health Service (USPHS); San Bernardino County Flood Courted Interest (SBCFCD); Mittersoliton Water District of Southern California (WMD); Las Angeles Department of Power (LADPH); City of Las Angeles, Department of Public Health (LADPH); Chip of Las Angeles, Department of Proportment of Public Health (LADPH); Chip of Las Angeles, Department of Mater Resources (DWR); or nationed. h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service. g Grovimetric determination.

CENTRAL VALLEY REGION (NO. 5)

-								_								_			
		Analyzed by i		955U															
		Os CaCO ₃ ify MPN/ml by i																	
		bid - C				69	100		7	35	Н	140	4	0					
	,	CO3	P P C			64	57		94	17	33	77	22	92					
		Hordr os Co	Tatal			261	292		281	232	261	526	234	253					
		- po				15	133		13	21	2	11	77	13					
	Tatal	dis- solved solids	E dd u										236 g						
		Other constituents				T. t. alk. 200	Tot. alk. 274			D.t. alk. 26.	1k. 264	Jk. [-]	SE	Tot. alk. 284					
		Other				, t. g	lot. a			D. 4. B	Tot. alk.	Tot. alk.	Tot. alk. Pol. 0.00	Pot. a					
		0.00	[2010			F						-	128						
	5	Baran Silica	(0)			쾽	릥		9	0	4	3	0.0	2					
d)	a per millian	Fluo-B	(F)										3.0						
STA. ES	parts per millian	-iN											0.0						
RED BASK CHEEK MEAR RED BLAFF (STA. E84)	o vine	Chlo-	(CI)			ag (2)	3.39		26	2.70	27	2.T	6.2	9.5					
EAR RED	G .	Sul											13.1						
CREEK N	nstituent	Bicar -	(HCO ₃)			3.97	1.28		8E	4.03	50 3	12	24.9	272					
ED BARK	Mineral constituents	Polas- Carban-	(cos)			0.27	0.23		2.00	7.27	1.27	. 5	5.17	0.20					
0.5	Mir	Polas-	X										0.00						
		Sadium	(0 Z)			0.71	3.70		800	10.0	36 0.7		11	7					
		Magne	(Mg)										wei Et						
		Calcium	(Ca)			120.0	1.		13	7 7 4	5.21		5 62	(A)					
		Ha	-				it.		4:	, y	: [-;	-4 ,-	* ;						
		Canductance (micramhas	E 20°				4		-	÷	7	30.01	100						
		D	%Sat				3		11.	1.0	4	end end	10	*					
		Dissolvad	ppm %Sat			1	3			2.5	7.	::	÷	1					
		Temp In OF				1	~				~			-					
		Oischarge Temp.			OMD D						~	2	-	(r t.)	POTED!	TUTT	X)		
		Date and time	P S.T	=	-		-	1	ą.	Å.	7	-3	-1	= =====================================	28	,			

b Laboratory pH

Sum of calcium and magnesium in epm

c. Sum of calcum and magnessium in opm d. Iran (Fs), alumnum (A1), arsance (As), capper (Cu), Icad (Pb), manganase (Mn), 2 nc (Zn), and hexavalent chromium (Ci⁻¹⁶), reparted here as $\frac{0.0}{0.00}$ except as shown.

Derived fram canductivity vs TDS curves

Determined by addition of analyzed constituents.

Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Duvisson af Lebanatories, or United States Public Health Service.

Minned analyses made by United States Geological Survey, Quality of Water Bronch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Residently of Water Bronch (USGS); United States of States and Public Health (USBR); United States Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); Terminal Testing Lebanatories, Inc. (TIL); or California Department of Water Resources (DMR); os indicated.

ANALYSES OF SURFACE WATER CHRISTON (NO '5)

Department of the Interior, Durman of Re Tamation (USAR), United States Public Health Service (USPHS), Sim Beforedine County Plead and Discussing (LADMP). Sim Beforedine County Plead and Discussing (LADMP), as indicated the County of Law Angel. Durmanism of Public Health (LADM), City of Lang Reach Department of

CENTRAL VALLEY REGION (NO. 5)

			Hardness bid- Coliform! Analyzed as CaCO _S nppm by:		UEGS													
		£	MPN/mi		Median 62,	Meximum >7000.	Minimum 2.3											
		Tur-	- pid - th in ppm		15	9	6		10	25	15	6	2	8	07	120	8	
			OCO S N C		8	33	52		1/2	971	82	99	23	9	11	9	-7	
					88	127	167		166	206	138	149	96	53	69	73	77	
		Per-	sod -		52	64	12		51	4.7	52	53	64	777	36	04		
		Total	solved solids in ppd		216°	302 e	427 e		415 e	492 с	356 e	384 e	235 f	117 e	120 e	143 e	172 f 1695	
			Other canstituents										PO4 0.20				AS 0.01 ABS 0.0 PO4 0.15	
			Silica (SiO ₂)										77				13	
	_	l'an	Boron (B)		0.0	0.2	7.		0.5	0.5	7.0	0.5	7.0	0.1	0.1	0.1	0.0	
	million	per millian	Fluo- ride (F)										0.01				0.0	
4. 109)		equivalents	trote (NO ₃)										2.6				0.03	
SEN (ST	٩	edniv	Chia- ride (CI)		55	76 - 2.14	3.27		3.07	3.55	8.5	2.79	1.52	25	21	24	33	
KWIGHT	5		Sui - fate (SO ₄)										06.00				19	
3H NEAR	constituents		Bicar- banate (HCO ₃)		1.61	1:38	140		11.84	1.80	1.61	108	94.1	53	1.08	82	99	
ROCK SLOUGH NEAR KNIGHTSEN (STA. 109)	Mineral con		Carbon- ote (CO ₃)		00.00	00.00	0.00		00.00	00.00	00.0	00.00	00.0	00.0	0.0	00.00	00.0	
RC	W		Potas- Sum (X)										1.6				1.7	
			Sodium (Na)		1.91	57	3.48		3.44	3.70	3.00	3.31	1.91	19	17	0.96	28	
			Magne- sium (Mg)										0.92				9.1	
			Calcium (Ca)		1.76	2.54	3.34		3.32 °	111.7	2.76	2.97	1.00	1.06	1.31	1.47	16 0.80	
		_	0.0 I		7.3	8.0	7.3		7.1	7.2	7.3	7.5	7.7	7.5	8.1	7.3	7.3	
		Specific	(micromhos of 25°C)		375	525	743		721	855	620	8999	403	204	208	8472	596	
	_				7.5	47	29		20	98	85	93	98	98	81	83	81	
			Dissalved cxygen ppm %Sa		6.7	7.3	7.5		9.8	7.3	8.7	9.5	4*9	6.1	6.8	7.0	6.9	
Ì			E 0 C		99	19	12		77	\$	92	19	69	69	92	92	74	
			Discharge Temp	Tidel														
			and ime	1962	10/4	11/13	12/10	1963	1/8	2/6	3/13	1230	5/13	6/5	7/10	8/6	9/10	

o Field pH

b Laboratory pH

c Sum of calcium and magnesium in epm.

c. Sum of calcium vin unique may be more than the more of the contract of the e Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

h Annual median and range, respectively, Calculated from enalyses all duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

- Maneral analyses made by United States Geological Survey, Quelity of Water Branch (USCS), United States Department of the Interior, Survey of Reclamation (USBR), United States Carological Survey, Quelity of Water Branch and States Department of States Department of States (USPR), princed States Carological Survey Carological Surve

CENTRAL VALLEY REGION (NO. 5)

p	_		_				_										
		Anolyzad by 1	150.														
		Hordness by MPN/mi		Wellen 12.	Meximum 7,000+	Mi-imum											
		pid -		-	ä	14		25	-3	10	1	15	~	4	~	7	
		800 N		-	c	*			3	-			_	0			
			1	94	17	6		20.27	14	169	56	F		3	-2	77	
		Sod -		72	3	%		25	25	21	Č.	ń	T	23	72	5	
	7040	solids um										92,				1/f 82e	
		Other constituents										PO1, 0 At 0				T. t. alk.	
		Silico (SiOg)										3				[
	lion	E .		0	0,2	0.0		0.1	3	3	0	0.	31	9	3		
	million a	Fluo- ride (F)										0.0					
SACRAMENTO RIVER AT BEND (STA. 12c)												0.00				: 60.2	
BEND (S	ports pe	Chlo-		4.2	3.0	3.6		0.12	2.8	3.0	0.00 0.00	0.07	0.0	2.8	2.6	-15:	
VER AT	č	Sul - fota (SO _a)										0.19				- C	
ENTO RI	stituanti	Bicar - bonote (HCO ₃)		63	1.08	7.1		6 <u>7</u> 1.10	1.02	1.11	70	67 1.10	64	1.05	1.30	10	
SACRAN	Minardi constituants	Corbon- (CO ₃)		00.0	0.00	2 6		00.00	0000	900	0000	0 0	0.00	00.00	3.5	. 13 . 13	
	Min	Polos- Rium (X)										3.613				c.	
		Sodium (Na)		6.7	0.20	9.0		0.33	0.0	5.0	313	0.27	0.3	2.5	2.2	<u>.</u>	
		Magne- sium (Mg)										2.1				0.37	
		Calcium (Ca)			13	86.0		16.0	16.0	8:0	1:1	3/2	100	1.96	37.	II S	
		¥ 5	_	3	42	T.		7	77.7	32	7.6	7.	1:	7-1	1	4.	
		Spacific conductance pH (micromhos pH of 25°C)		115	171	131		130	151	28	140	128	117	112	110	TTC	
		lved gen		107	100	95		4	ω	8	8	8	103	101	100	÷.	
		Disso		11.1	10.5	10.4		10.8	11.0	11.5	10.4	10.3	16	10.8	10.7	1	
		Te or		57	9	ω.		67	51		3	55	57	3.5	₹.	ς.	
		Dischorgs Temp in of a in oF		6,440	7, 40	9,430		11,900	19,400	15,000	8,620	11,500	1,40 1	10,400	10, '90	11,500	
		Dote ond time sompled	19/1	1./1	11/1	12/7	1.63	1055	1/4	, 1 Ile	1/5	514	3 -	7/1,	1130	1/12	

b Loboratory pH.

Sum of colcum and magnessum in them.

Sum of colcum and magnessum in them.

One of (Pb), manageness (Un), and (Pb), managenese (Un), and (Paxevalent chromium (Ci *6), reported here as 0 0 except as shown. Sum of calcium and magnesium in epm.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

h Annual median and song, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Geological Survey, Calculated Mandel United States Geological Survey, Calculated Mandel United States Geological Survey, Calculated Mandel United States Geological Survey, Calculated States Geological Survey, Calculated Mandel Man

ANALYSES OF SURFACE WATER

ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (No. 5) TABLE D-3

official to the totals, Boreau af Rachmentine (USDR), United Septemblish Product across some service of an elementine County Flood and Winse and Power (a CREPT), City of Lee Angeless Department of Public Headile (LAGPT), City of Lee Engineer Department of Public Headile (LAGPT), City of Lee Engineer Department of County Floor

SACRAMENTO RIVER AT BEND (Sta. 12c)

		Analyzed by ?	.553n														
	4	bid - Coliform" 11y MPN/mi		-											-		
	707	- piq Modu															
		N COS		0	0	0	0	43 4	0 47	0	1,8	0 84	20 0	743	52 0		53 0
L				177	25	23 th	23	25	±	245		73	25	45	24 5:		23
-	Per	ed sod -		87f 24 816	888 828	128 1798	87f 2,	87f	90g 90g	98° 201	100 St.	362	98g 98g	87f 2	99 ^f 2		299
-	<u>آمِ</u>	solved solids in ppm		60 60	ω ω	-100	00	00	00	23	20.2	23	0.00	∞ ∞	23		5.01
		Other constituents		Cu 0.02 Fe 0.01 Zn 0.05	Cu 0.02 Fe 0.01	Cu 0.02 Fe 0.01	Cu 0.00 Fe 0.03	Cu 0.00 Fe 0.16	Cu 0.10 Fe 0.09	Cu 0.01 Fe 0.06	Cu 0.01 Fe 0.08 Zn 0.10	Cu 0.01 Fe 0.12	Cu 0.02 Fe 0.00 Zn 0.11	Cu 0.02 Fe 0.04 Zn 0.04	Cu 0.05 Fe 0.00		Cu 0.03 Fe 0.00
		Sihca (SiO ₂)		췺	23	্য	72	ଷ	98	81	81	8	23	8	£31		27
6	million	Boron (B)		7:	0.0	7.	9	0.0	0.0	1.0	0.0	0.1	0.1	0.1	0.0		0.1
millia	per m	Fluo- ride (F)		0.0	0.01	0.0	0.01	0.2	6.0 0.0	0.01	0.0	0.0	7.00	0.0	0.2		0.0
ports per million		trofe (NO ₃)		0.02	0.00	0.02	1.5	3.1	0.02	1.1	0.02	0.02	0.02	1.5	0.02		0.02
ă	equivalents	Chio- ride (CI)		2.2	0.06	0.07	2.7	3.9	2.7	4.2	3.4	4.8	0.13	3.6	0.12		0.0
	<u>-</u>	Sul - fote (SO ₄)		0.10	5.0	5.0	3.6	11	0.13	0.0	0.12	0.10	6.3	5.3	0.14		0.10
	constituents	Bicor- bonate (HCO ₃)		64	64	64	61 1.00	148 0.79	64	1.13	1.08	1.10	67	098	1.18		1.20
1	Mineral con	Carbon- ate (CO ₃)		00.00	00.00	0.00	0.00	0000	000	000	00.00	0.00	00.00	0.00	00.0		00.00
	ž	Potos- Sium (K)		0.03	1.2	0.03	0.03	0.0	1.1	2.0	2.5	0.00	1.5	1.5	1.5		0.0
		Sodium (No)		62.0	0.30	6.3	0.27	5.8	6.5	7.6	7.3	0.33	7.8	6.6	0.33		0.32
		Magne- Sium (Mg)		9.4	3.4	3.3	0.39	4.4	0.39	5.5	5.0	5.6 0.46	0.35	3.9	5.2		5.0
		Calcium (Co)		0.50	09.00	0.60	0.50	0.50	11	1100	0.55	0.50	0.65	111	12		13
		- E		7.5	7.8	7.6	7.44	7.0		7.7	7	7 • h	7.1	7.45	7.8		F-
	Specific	(micromhos of 25°C)		115	977	11%	116	112	113	127	123	128	128	111	128		127
		Dissaived 04ygen ppm %Sai															
		Cischarge Temp															
		Sompled P S.T	1962	9/1-10	9/11-20	9/21-30	10/1-10	10/11-14	10/15-31	11/1-10	11/11-20	11/21-30	12/1-14	12/15-19	12/20-31	1963	1/1-10

b Loborotory pH.

c. Sum at solicium and anginesium in eam.
I to solicium and anginesium in eam.
I to solici (As), cospare (Cu), lead (Pb), manganese (Idn), 2 na (Za), and hexavalent chromum (Cr*6), reported here as $\frac{0.0}{0.00}$ except as shown. c Sum of colcium and magnesium in epm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents. g Gravimetric determination.

Americal analyses made by United States Geological Survey, Quality of Water Branch (USGS), United States Department of the Interior, Survey of Reclamation (USBR), United States Positive of Survey, Quality of Water California (MWD), Los Angeles, Department of Water and Power (LLDWP), City of Los Angeles, Department of Public Health (LADPH), City of Long Beach, Department of Public Health (LADPH), Carry of Long Beach, Department of Public Health (LADPH), Carry of Long Beach, Department of Mater Resources (DWR), os indicated h Annual median and range, respectively. Cataulared from analyyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Services.

TABLE D-3

ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (No. 5)

	_	-															
		Anolyzed by l	.92411														
		Hardness bid - Collormh as CoCO ₃ ily MPN/mil															
	101	- produ															
		Hardness as CoCO ₃ Total N C		0	0	0	0	٥	٥	C	-	D	10	3	0	2	0
		Hard as C		50	50	1,1,1	2,0	2	O.	99	51	53	45	4,7	51	14	911
	D	- PO - E		23	7.	\$3	2	86	Ħ	18	9	13)	19	20	22	22	21
	Total	salved salids In ppm		97f 986	yar.	91r 946	201 ^f	934	94°	101 ^f 100 ^{ff}	888. 888.	P. 18. 4.	82° 1	93 ^f	1000 Bogg	89,18 84,8	86°
1		tuants		Pe 0,000	0.01	0,*00	10.0	0,10	0,11,1	0.16	70.0	0.01	0.0	0.04	0.04	0*08	70.0
		Other canstituents		<u>इ</u>	£.	.4	0.00 Pm	0.01 Fe	0.00 Fe 0	0.03 %	0.02 Fe C	0.03 Fe	5.	0.02 Pe	0	9	0 03 Fe
		Other		Cu 0.01	Cu 0.04	Fe 0.05	20 0 o	Cu 0.0	Su O.s.	20 0.5	% O.O.	Sea Ca	2n 0.04	Zu O	Zn O.oh	Cu 0.02	Cu O.C
		(S))(Ca		93	হা	T.	al	a	<u> </u>	i31	ଆ	ৱা	티	₹I	a	15	3
	million	Baran (B)		0.0	1,0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0
million	5	Fluo- ride (F)		0.0	0.0	0.0	0.0	0.0	0.0	0.01	0.0	0,01	0.1	0.00	0.01	0.1	0.0 0.0I
outte par	aquivalents p	rrats (NO ₅)		1:1	1.4	3-8	3.2	0.7	0.0	0.5	0.0	0.0	1T 0.03	1.8	9.0	0.8	0.0
Contract of the contract of th	a doive	Chio- rids (CI)		3.4	3-1	0.4	0.00	01.0	8.9	0.13	0.12	0.10	0.10	5.5	0.0	0.00	0.07
	e i	Sul - fats (SO ₄)		0.13	9-6	6.2	6.0	5.0	0.15	8.8	7.4	0.19	0.15	7.0	0.15	0.0	0.0
	constituents	Bicar- bonata (HCO _S)		1.18	1.1	950	1.11	69	1.11	111	$\frac{61}{1.00}$	1.07	0.00	1.03	1.1	1.10	1.03
	Mineral car	Carban-		0.00	0,00	0,00	00.00	0.00	00.0	00.00	00*0	0.00	00.00	0000	000	00.00	0000
	M	Potas- srum (K)		1.6	0.04	0.0	0.03	0.03	1.4	1.4	0.01	2.6	1.5	10.0	0.03	0.03	1-7
		Sodium (Na)		0.31	6.5	0.39	6.5	0.00	0.24 0.24	0.98	55.0	0.30	0.20	0.0	0.30	6.1	2.0
		Magns- sium (Mg)		250	0.00	0.3	200	11.0	0.10	00.00	0.41	5.0	0.35	0.38	0.36	0.35	0.30
		Colcium (Ca)		11 0.55	00.0	11 0.55	0.55	0.55	2000	09*0	09.0	50.0	110 (3.0	H 00.00	0.05	0.00	0.55
L		DHG		7.6	7-1	7 - 5	7 - 3	1.1	7+7	7.4	7.6	:	7.4	T.h	71	7.8	7.1
	Specific	conductonce pHb (micromhas pHb) at 25°C)		127	12/3	12.5	13%	130	131	142	131	134	100	17.3	2.35	118	11.7
		Dissalvad oxygan ppm %Sot															
-		1 1															
		Discharge Temp															
		Date sompled P S T	11/13	1/11-:0	1/51 31	3/1-5	71-9/	9/18-28	3/1-6	3/7-73	3/24-31	4/1-5	4/6-15	h/16-50	5/1-10	5/11-20	5/21-31

b Loboratory pH.

Determined by oddition of analyzed constituents.

Gravimetric determination.

h Annual madian and tanga, respectively, Calculated from analyses of dusticate monthly samples made by Caldonina Department of Public Health, Division of Laboratories, or United States Public Health Service

I Minated States Geological Survey, Quality of Water Branch (USCS), United States Department of the Interview of Reclamation (USBR), United States Carlot (USPHS), Son Barnaddino County Flood

Cannol District (SECC), Managolium Manag

SACRAMENTO RIVER AT BEND (Sta. 12c) (Continued)

CENTRAL VALLEY REGION (No. 5)

		Anoiyzed by 1	USGS											
		Hardness bid Coliform Analyzed as CoCO ₃ Ity MPN/mi by i Dpm Total N.C. ppm ppm												
	Total	- bid ity in ppm												
		Hardness as CoCO ₃ Total N.C. ppm ppm	C		0	0							 	
		Totol ppm	h h		94	911								
	d	sod -	6		23	22		 			 			
	Tatal	solved sod in ppm		86 ⁸	85°F	85 ^t								
		uents	90		<u>10*0</u>	70.0								
		Other canstituents	200	D L=1	0.01 Fe	e Fe								
			5	Zu O O UZ	Cu Oro	Cu 0.02 Fe								
		(SiO ₂)	00	31	8	23					 			
c	Hion	Boron (B)		3	0.0	0.1		 						
oillin '	per m	Fluo- ride (F)		0.01	0.0	0.1			 					
ports per million	equivalents per million	Ni- trate (NO ₃)	0	0.05	0.03	0.0								
٩	equiv	Chia- ride (CI)	0	00.0	2.3	2.2								
	ë.	Sul - fats (SO ₄)	0	0.11	0.10	5.8							-	
	etituent	Bicar- banate (HCO ₃)	Ş	0:1	1500	60 0.98								
	Mineral canetituents in	Potos- Corbon – E		00.00	00.0	0000						 		
:	Min	Potos- Sium (K)	0	0.03	1.0	1.5						 		
		(Na)	U	0.24	0.27	6.1						 	 	
		Calcium Magner (Ca) (Mg)		0.42	4.5	14.4 0.36								
		Calcium (Ca)		05.50	0.55	0.55								
		Q Hd	5	9	7.1	7.6								
	Specific	canductonce pH ^D C (micramhos pH ^D C	C F	OTT	117	117								
		oxygen (n					7							
							Station discontinued							
-		= 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0					1 1180		 				 	
		Discharge Temp					Station							
		ond time sompled P S.T	1903	0/1-10	6/11-20	6/21-30	1/1							

Laboratory pH.

c. Sum of calcium and magnesium in epm.
d. Iron (Fel.; alumnum (Al), arsenic (As), capper (Cu), lead (Pb), manganese (IAn), zinc (Zn), and hexavalent chramium (Gr*6), reported here as $\frac{0.0}{0.00}$ except as shown.
e. Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination.

Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Survey of Reclamation (USBR); United States Public Health Service (USPHS); San Benardina County Flood Control District (SBCECD), Mirropoliton Water District of Southern California (MMD), Las Angeles Department of Profess (LADMP); City of Las Angeles, Department of Public Health (LADPH); Terminal Testing Laboratories, Inc. (TTL); ar California Department of Water Resources (DWR); or indicated Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Loboratores, or United States Public Health Services.

PENTERL VALLEY HEGION (N.

		Anolyzad by i	-5														
-		Anol	Unde														
		bid - Coliform (1y MPN/ml															
	-	- piq								0							
		Hordness os CoCO ₃ n		0 95	0 29	0	53 0	36	°	95	0	0 09	63 1	0 0	0 09	0 %	45 0
}		Sod - os		75	33	~	20	23	52	52	50	72	23	3	Š1	†2	21 7
-	oto!	solids solids in ppm	-	100g	113"	1045	101F 90K	75 f	122°	DA.F	1106	111 ^f	ner nue	, 168	107 ^f	1000	86# 89.8
-	F		-														
		Other constituents		Fe 0,12	Fe 0,00	Fe 0.00	Re U.II	Fe Ualt	Fe 0.09	Fe 0.02	Fe Outs	Fe 0.03	Fe theth	Fe O.to	Fe 0.00	Fe U.OX	Fe 1,065
		(S:02);		3	991	92	27	22	a	27	<u>12</u>	27	ē.i	গ্ৰ	21	22	<u>تا</u>
	million	Boron (8)	-	3	0.1	0	0	0	<u>: </u>	0	3	o	0.1	0	3	0 0	0 0
1	per	Fluo- ride (F)	_	25.0	4.0	C	0.0	0.01	0.0	0.0	0.01	0.1	0.1	0.1	0.0	0.0	0.0
Tabolat (10 cm	equivolents	rots (NO ₃)		1.3	1.6	10.0	1.7	5.7 0.0)	0.01	0.02	0.02	0.0	0.15	1.1	0.0	0.0	5.1 0.08
	edni	Chlo- ride (CI)		0.1	2.0	4.4	45. 10.	3.1	0.15	5.0	\$150 0.15	2:5	0.18	0.0	7.0	5.7	0.12
WI DO	ni 8	Sul - fots (SO ₄)		0.10	0.10	0.10	2.6	5.6	0.17	0.15	5.6	0.13	0.15	0.14	17.0	0.15	0.10
T TAIL	constituents	Bicor- bonote (HCO ₃)		78	1.41	1.28	1.23	41 0.67	1.38	76	1.34	1.36	76	56	1.21	1.30	26.0
THE LANGE THE WAY DOLL IN	Mineral con	Corbon-		0.00	00.0	00.0	0.00	0.00	0000	00.00	000	00.0	00.0	0.00	000	000	0.00
100	Min	Potos- sium (X)		100	1.0	0.03	0.03	0.0	1.6	2.0	2 T.	1.0	1.5	1.1	0.03	1.7	1.1
		Sodium (NO)		0.37	200	0.37	7.6	0.03	2.6	85.0	2.0	8.,	0.38	0.26	8.1 0.35	8.7 0.3R	2.5
		Mogner Sum (Mg)		0.42	6.6	5-1	5.7	3.6	6.1	0.50	7.1	0.0	7.4	3.8	6.7	5.6	4.4 0.36
		Colcium (Co)		0.70	0.70	17.70	03.00	7-0	14 0.70	09.0	09.0	0.70	50.0	0.55	13	14 0.70	0.55
ľ		Q.H.		8.1	8.	8	7.5	6.9	7.6	7.5	7.7	7+7	7 · t	7.5	7+3	7.5	7.1
	Spacific	(micromhos of 25°C)		143	15.	143	138	33	160	148	156	156	144	114	143	156	117
		Orasolvad Oxygen Dpm %So															
		Discharge Tamo															
		some times	#3:	0/1-10	9/11-5	1/21-30	1 /1-12	10/13-17	10/18-31	11/1-10	11/11-20	11/21-30	12/1-15	12/16-12	12/20-27	1/16-31	2/1-7

Loborotory pH

c. 2 Min Statism on analysis must be min. Section on a major of Co.), lead (Pb.), manganess (Mn), and Ca.), and haxavalent chromium (Cf.**), reported here as 0.00 except as shown. c Sum of colcium and magnesium in epm.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents. g Grovimetric determination.

h Annot median and range, respectively. Colculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

In Manual analyses made by Mand-States Gaological Survey, Quality of Water Browneld United States and States Gaological Survey, Quality of Water Beamer and Properties of Reclamation (USBR), United States Public Health Service (USPHS); Son Bernardina California (140D), Las Angeles Department of Water California (140D), Las Angeles Department of Water California (140D), Department of Public Health (LADPH); City of Lang Beach, Department of Public Health (LADPH); City of Lang Beach, Department of Public Health (LADPH); City of Lang Beach, Department of Water Resources (DWR), as indicated to the California Department of Water Resources (DWR), as indicated to the California Department of Water Resources (DWR), as indicated to the California Department of Water Resources (DWR), as indicated to the California Department of Water Resources (DWR), as indicated to the California Department of Water Resources (DWR), as indicated to the California Department of Water Resources (DWR), as indicated to the California Department of Water Resources (DWR), as indicated to the California Department of Water Resources (DWR), as indicated to the California Department of Water Resources (DWR), as indicated to the California Department of Water Resources (DWR), as indicated to the California Department of Water Resources (DWR), as indicated to the California Department of Water Resources (DWR), as indicated to the California Department of Water Resources (DWR), as indicated to the California Department of Water Resources (DWR), as indicated to the California Department of Water Resources (DWR), as indicated to the California Department of Water Resources (DWR), as indicated to the California Department of Water Resources (DWR), as indicated to the California Department of Water Resources (DWR), as indicated to the California Dep

ANALYSES OF SURFINGE WATER
ANALYSES OF SUPERIOR (N. 16.) COMPRESSOR OF SUPERIOR (N. 16.) COMPRESSOR OF SUPERIOR OF

CENTRAL VALLEY REGION (No. 5)

		Anolyzed by 1	USGS															
		ity MPN/ml																
	-	s S SE		CI	0	0	0		0	0	-	0	0	0	0	0	0	
		Hardness os CoCOs Total N.C. ppm ppm		96	58	99	79	63	61	Δη	28	09	52	25	63	62	09	-
		in a second		23	23	13	13	17	13	139	18	50	12	12	[2]	[]	22	
	Total	solids in pom		101 ^f 115 ^g	105f 1078	1126	128°	105f 1086	105f 1056	86f 898	1000	105f 1068	94°F	101 1006	1106	109f 1088	105f 1058	
		Other constituents		Fe 0.11	Fe 0.12	Fe O.O4	Fe03	Fe o.o4	Fe U.O4	Fe O.O4	Fe 0.04	Fe 0.07	Fe 0.09	Fe 0.07	Fe 0.05	Fe 0.05	Fe 0.05	
(penu		Silico (SiO ₂)		52	92	27	72	701	78	22	75	52	25	25	52	23	81	
(cont1	hillion	Boron (B)		0.1	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.1	0.1	0.1	0.1	100	0.1	
. 14c)	per m	Ftuo- ride (F)		0.0	0.0	0.2	0.2	0.2	0.1	0.00	10.0	1.0	0.2	0.0	0.0	000	0.6	
D (Sta		Ni- trote (NO ₃)		3.4	1.8	0.8	0.02	0.02	0.03	0.03	1.8	1.2	1.2	0.02	0.05	2.5	2.1	
ERS BEN	ports pe	Chlo- ride (CI)		5.4	5.1	5.1	6.8	5.7	5.0	4.5 0.13	0.17	0.14	3.5	3.9	4.2	1, t	0.40	
AT BOY	ē	Sui - fote (\$04)		5.6	6.0	7.0	9.0	0.0	9.0	7.0	0.15	7.2	0.10	0.15	7.6	6.8	5.6	
O RIVER	constituents	Bicor- bonote (HCO ₃)		1.08	78	83	98	1.25	1.21	57 0.93	1.13	78	70	1.23	1.33	81	1.28	
SACRAMENTO RIVER AT BOYERS BEND (Sta. 14c) (continued)	Mineral con	Corbon- ote (COs)		8	00.00	0.00	00.00	00.00	00.00	00.00	00.00	00.00	0.00	0000	000	000	00.0	
SA	Mine	Potos. Grum (K)		1.5	1.1	1.3	1.5	1.5	1.5	1.5	1.6	1.1	0.03	0.03	1.0	1.6	1.4	
		Sodium (NO)		7.2	7.2	0.32	0.37	6.3	6.0	5.2	6.3	7:1	6.5	0.30	0.35	8.0	0.35	
		Mogne- sium (Mg)		5.5	6.2	7.7	0.73	6.7	6.3	14.7 0.39	6.2	5.5	0,40	5.6	7.4	6.6	0.59	
		Colcium (Co)		0.70	13	114	0.85	0.70	0.70	0.55	13	0.75	13	0.65	13	0.70	0.60	
		a _r		6.5	7.6	7.6	7.5	7.6	7.4	7.5	7.h	7.9	7-7	7.9	7.3	7.4	7.4	
	Spacific	conductonce (micromhos of 25°C)		148	150	160	161	152	151	711	145	149	133	141	159	159	1,52	
		Dissolved oxygen ppm %Sat																timbel
																		disdon
		Dischorge Temp																Station disdontinued
		ond time sompled P S T	1963	2/8-17	2/18-28	3/1-8	3/9-23	3/24-31	1-1/4	4/8-17	4/18-30	5/1-10	5/11-20	5/21-31	01-1/9	6/11-20	6/21-30	1/1

b Loboratory pH.

Sum of colonium (Al) passure in spin.

Iron (Fe), and hexavalent chromium (Cr⁻⁶), reported here as \$\frac{0.0}{0.00}\$ except as shown. c Sum of calcium and magnesium in epm.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

g Grovimetric determination.

h Annual median and range respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Geological Survey, Calculated Water Banach (USCS), United States Geological Survey, Calculated States and Power (LADWP); City of Los Angeles, Department of Water and Power (LADWP); City of Los Angeles, Department of Public Health (LADPH); City of Long Beach, Department of Public Health (LADPH); City of Long Beach, Department of Market Resources (DWR), as indicated.

CENTRAL VALLEY REGION (NO. 5)

PARMENTO RIVER AT RIVING CITY (STA. 87a)

	-	Anolyzed by i	SOSU														
		bid - Caliform 11y MPN/ml		Median . 2.	Maximur 2, n.	Z											
	Tur	- bid - ty mgg u		R	e e	170			35	~	9 7	5	52	33	15	`	
		SS S C C C S S C C S S C C C S S C		6	0	-		0	0			17	OC.	-	*	-	
		Hordn os Co Totoi ppm		57	52	28		5	7	89	777	51	92	877	20	29	
	ď	sod -		2	93	η		70	21	3	=	21	12	đ	R	19	
	Totol	solids solids in ppm										91 f 98¢				8 f 76e	
		Other constituents										PO _{1, 0.4} 42				PO _{1, U. B)} At 4.45 ABS 0.00	
		Silico (SiO ₂)										 ::::::::::::::::::::::::::::::::::				31	 _
	6	5		4.0	0.0	i		=	3	3	4	湖	7	0.0	0-0	0:0	
(a)	ports per million equivolents per million	Fluo-B										16.0				1.01	
(STA. 8	ports per million volents per mill	Ni- trote (NO ₃)										0.00				1.1	
E CILL	equivo	Chio- ride (CI)		2.0	8.8	2.0		5.6	4.5	57F	0.00	200.	3.0	0.00	70.0	2.5	
AT BUIL	5	Sul - fots (SO ₄)										5 0.1.				200	
O RIVER	stituents	Bicor- bonote (HCO ₃)		28	13	140 0.65		1.29	1.25	25 T	26.5	70	14	1.13	63	1.00	
SACRAMENTO RIVER AT BUITE CITY (STA. 878)	Mineral constituents	Corbon- ote (CO ₃)		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	00.00	00.00		00.00	00.00	00.00	00.00	00.0	0,48	00.00	00.0	100	
Š	Min	Potos- sium (X)										400					
		Sodium (No)		18.	550	3.6		6.35	0.31	200	7:00	0.25 0.25	9.9	0.26	8.2	1.23	
		Magne- sium (Mg)										0.37				1.75	
		Calcium (Ca)		1.14	3.1	5.5		1.10	1.1	1.3	-	7	112	19.00	1.00	1.5	
		₽ ⁸		35	1	32			31:	3.	1	1	1	32	100	1	
	Charific	conductance (micromhos ot 25°C)		37		-			147		311	127	=	124		1	
		lvs d gsn %Sot		7	-	ű		7.	3,	0	÷	66	및	2	3 1	7 7	
		Disso		3.5	4.	3		17.	3.7	7	7.5	6.6		3.6	7.6	7.0	
		Temp in of		57	K	^		-	25	27	15	3	69	63	69	23	
		Dischorge Temp		16, 200	. 5				8	6,51	11,60	16, 111	8,72n	4,130	9, 100	100	
		Dots samplad P.S.T.	7.162	1.11	1.1.1	1-15	27	13	non.	λ	. 16	5 1 1305	13.15	7 8	8/6	1/2	

ANALYSES OF SURECE WATER FRIGHT OF VALUE OF SURECES OF

Loboratory pH.

Sum of calcium and magnesium in epm.

Iran (Fe), aluminum (AI), arsenic (As), copper (Cu), load (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr*⁶), reported here as 0 0 0 except as shown.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

Mineral analyses made by United States Geological Survey, Capacity of Witter Brace, (USSP), United States Public Health Service (USPHS); San Bernadina Cannal District (SECP), International Witter (SECP), Extensional Witter (SECP), Extensional Media California (AMD), Lab Anageles, Department of Water and Power (LADMP), City of Las Angeles, Department of Water Resources (DMR); as indicated Angeles, Department of Public Health (LADPH); City of Lang Beach, Department of Water Resources (DMR); as indicated Angeles, Department of Public Health (LBDPH); City of Lang Beach, Department of Water Resources (DMR); as indicated Angeles, Department of Water Resources (DMR); as indicated Angeles, Department of Public Health (LBDPH); City of Lang Beach, Department of Water Resources (DMR); as indicated Angeles, Department of Public Health (LBDPH); City of Lang Beach, Department of Water Resources (DMR); as indicated Angeles, Department of Public Health (LBDPH); City of Lang Beach, Department of Water Resources (DMR); as indicated Angeles, Department of Public Health (LBDPH); City of Lang Beach, Department of Water Resources (DMR); as indicated Angeles, Department of Water Resources (DMR); as indicated Angeles, Department of Public Health (LBDPH); City of Lang Beach, Department of Water Resources (DMR); as indicated Angeles, Department of Water Resources (DMR);

erromation (USBR), United States Public Health Service (USPHS) , San Bernardine County Flood of Los Angeles, Opportment of Public Health (LADPH), City of Long Reach, Department of

ANALYSES OF SURFACE WATER TABLE D-3

SACRAMENTO RIVER AT BUTTE CITY (Sta. 87a) CENTRAL VALLEY REGION (No. 5)

		Analyzed by i	USGS														
	-	bid - Coliform ity MPN/ml nppm															
	Tur-	- pid - ki i i i i i															
		N N N N N N N N N N N N N N N N N N N		0 09	55 0	0 25	20 0	1 7	25 0	53 0	53 0	54 0	59 1	50 2	57 o	54 0	26 0
_				25 5	22 2	522	5 24	† †?	23 5	5 77	244	25 5	22	2	23	25.2	23
-	al Per	solved sod - salids ium		99t 2	97 ^f 2	200 BSG	97t 2	84f 888	99f 948	103 ^f 2	101 ^f 2	106f 2 1076	103 ^f 2	91 [£] 92 ^g	104f 2	102f 986	105f 2
_	۽ آ		_	0,0,	0.00	0.00	0,0,	w w	0,0,	22	22	77	22	0.00	300	9 %	77
		Other canstituents		Fe 0.00	Fe 0.00	Fe 0.00	Fe 0.01	Fe 0.10	Fe o.oT	Fe 0.00	Fe 0.03	Fe 0.07	Fe 0.00	Fe 0.02	Fe 0.00	Fe 0.00	Fe 0.00
		Silica (SiO ₂)		81	78	8	%	잃	%]	8	%	138	72	\$ t	75	981	138
c	llion	Baron (B)		0.1	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.1	0.1	0.1	1.0	0.1
millio	per million	Fluo- ride (F)		0.0	0.0	0°05	0.2	0.2	0.0	0.1	0.0	0.0	0.1	0.1	0.2	0.2	0.0
parts per million	equivalents	rote (NO _S)		0.5	0.5	0.2	1.7 0.03	3.5	0.03	0.02	0.0	0.02	0.02	0.02	0.02	0.0	0.0
à	equive	Chlo- ride (Ci)		0.12	3.8	0.11	3.4	4.2 0.12	0,1	4.2	η·2 0•12	0.14	6.9	0.14	0.14	4.2 0.12	h.6 0.13
	<u>c</u>	Sul - fate (SO ₄)		0.12	0.15	0.15	5.6	7.2	0.15	6.0	5.6	6.4 0.13	7.0	0.15	0.14	6.6	5.2
	CONSTITUENTS	Bicar- banate (HCO ₃)		1:15	70	72	71	0.82	1.15	1.23	1.23	76	1.16	0.97	1.21	76	1.28
1	Mineral can	Carbon- ate (CO ₃)		00.0	0.00	00.0	0.00	0.00	00.00	0.00	00.00	0000	00.00	00.00	00.00	00.00	00.00
,	Min	Potas- Sium (K)		0.03	0.03	0.03	0.03	1.3	0.03	1.7	0.05	2.2	1.6	0.03	0.03	1.6	1.7
		Sadium (No)		0.35	0.32	0.31	0.33	6.2	0.32	8.0	0.35	8.8	0.35	6.4 0.28	0.35	0.32	0.35
		Magne- sium (Mg)		5.0	5.5	0.50	5.6	0.35	5.5	6.2	5.5	5.8	6.4	5.5	5.8	5.5	6.9 0.57
		Caleium (Ca)		0.60	13	0.60	0.55	9.7	0.60	0.55	0.00	0.00	0.65	0.55	0.65	13	0.55
		o _z		7.9	7.9	8.0	7.1	T+0	7.h	7.3	7.4	7.4	7.2	7.2	7.5	7.6	7.6
	Specific	(micromhas of 25°C)		128	129	131	131	112	137	144	142	146	141	115	137	139	146
		Dissolved oxygen (I															
		Tem in of															
		Discharge Temp															
		and time sampled PST	1962	9/1-10	9/11-19	9/21-30	10/1-10	10/11-16	10/17-31	11/1-10	11/11-20	11/21-30	12/1-14	12/15-20	12/22-31	1/1-10	1/11-20

b Loboratory pH.

Sum of calcium and magnesium in epm.

Jum of Calcium and magness with reprint (As), capper (Cu), lead (Pb), manganess (Mn), zinc (Zn), and hexardient chromium (Cr*9), reported here as 00 except as shown iron (Fe), aluminum (Al), areasited here as 00 except as shown

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

h Annual medion and range, respectively. Calculoted from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Dublic Health Service.

Internal parts (SECE) Managed States Gealogical Survey, Quality of Water Banach (SES). United States of Department of Health Carlos (SEPHS), San Bernardino County Flood
County Laboratories (Apple States Carlos). Associated Survey, Quality of Water Banachino County Flood
County Laboratories (Apple States Carlos). Associated Survey and States Carlos (Apple States Carlos States Carlos States Carlos (Apple States Carlos St

CENTRAL VALLEY REGION (No. 5)

		Analyzed by 5	USGS														
		bid - Coliformh Ai	-														
	-	P P M	-														
		N COS		0	н	0	0	0	0	0	m	0	0	0	0	0	0
		Hordness os CoCO _S		式	54	57	200	61	69	57	61	94	22	57	衣	54	26
		Sod t		77	50	22	21	13	8	18	18	13	19	13	50	21	12
	Totol	solved solids in ppm		104 ^f 102 ^g	88gf 95 6	105	107 [£]	102f	121 ^f 123 ⁶	99°	104f	898	94.t 958	102f 1056	95f	99 ^f	99°
		Other canstituents		Fe 0.00	Fe 0.05	Fe 0.05	Fe 0.10	Fe 0.05	Fe 0.04	Fe 0.07	Fe (1.03	Fe C.03	Fe 0.04	Fe 0.08	Fe 0.09	Fe 0.07	Fe 0.03
		Sinco (S:0 ₂)		81	25	81	27	52	27	133	73	티	77.	23	23	53	23
nued)	lion	Boron (B)		0.1	0.1	0.0	0.0	0.0	3.3	0.0	ी	0.0	0.0	0.1	7	0.1	0.1
(Conti	per million	Fluo- ride (F)		0.0	0.0	0.2	0.0	0.2	0.0	0.0	000	0000	000	0.1	0.1	0.0	0.1
. 87a)	equivalents per mil	rote (NO ₃)		0.0	0.03	0.02	0.02	1:1	0.02	1:1	1.8	0.03	0.03	1:1	0.02	0.0	0.0 10.0
TY (Sta	edning	Chia- rade (CI)		5.0 1.0	5.4	0.14	1.0	133	6.2	0.14	5.5	0.13	0.08	6.2	3.2	3.6	3.6
SULTER CI	ï	Sul - fate (SO ₄)		6.6	6.8	6.8	7.2	0.10	0.0	7.0	0.10	0.10	0.15	0.15	2.2 2.1	0.18	7.4
ZER AT	constituents	Bicar- banate (HCO ₃)		1.23	54	11.36	79	80	90	72	1.16	28	1.08	70	70	70	1.18
SACRAMENTO KIVER AT BUTTE CITY (Sta. 87a) (Continued)	Mineral car	Corbon-		000	00.0	00.0	000	0000	0000	00.00	00.00	00.0	00*0	00.0	00.0	00.0	000
SACRAN	Min	Potos- Sium (K)		1.7	0.03	0.03	0.03	0.03	1.7	1.6	1.6	1.7	1.6	1.0	2 T	1.2	0.03
		Sodium (Na)		0.35	5.5	0.31	7.2	7.0	8.1	6.3	6.4	0.22	5.9	6.5	6.5 0.28	6.0	0.30
		Magne- sum (Mg)		0.38	75.0	7.	6.3	7.4	6.4	5.5	0.52	3.9	20.4	3.6	5.2	0.38	5.7
		Calcium (Ca)		0.70	0.55	0.70	13	270	17 0.85	07.70	0.70	7.60	270	27	13	14 9.70	13
		e se	_	7.7	7.0	7.	7.7	7.5	7.3	7-4	7.3	7.3	7.5	7.5	7.5	7.6	F-
	Specific	(micromhos at 25°C)		142	11.6	147	150	151	180	145	149	115	128	777	132	134	143
		Dissolved oxygen ppm %Sol															
		Discharge Temp															
		and time sampled	1,763	1/51-31	_/1-,	2,6-17	2/18-28	3/1-7	3/8-22	3/24-31	4/1+t	4/7-16	4/17-25	5/2-10	5/11-19	5/21-31	6/1-10

h Annual median and range, respectively. Colculated from analyses of duplicate mountly samples mode by Colifornia Opparment of Public Health, Division of Lobariances, or United States Geological Survey, Calculated World States Geological Survey, Calculated World States Geological Survey, Calculated States Geological Survey, Calculated States Geological Survey, Calculated States and Personal States and Personal States and States Geological States and Personal States and Personal States and
ANALYSES OF SURFACE WATER CENTING VALISK PROTON (No. '.)

b Loboratory pH

c. 3 And stocking and a marginar in spin. d. (20), lead (Pb), manganese (IAn), and texacialent chromium (Gr*6), reparted here as $\frac{0.0}{0.00}$ except as shown. In the case of the control of the control of the case of the c Sum of calcium and magnesium in epm.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves

g Grovimetric determination

CENTRAL VALLEY REGION (No. 5)

SACRAMENTO RIVER AT BUTTE CITY (Sta. 87a) (Continued)

	p s z	22			
	Andly by i	USGS			
	Hardness Tur-Conform Analyzed as CoCO ₃ 11y MPN/ml by i				
-	- Pid - Pid Edd				
	Hardness as CoCO ₃ Total N.C.	0	0		
_	Hard Total	1	Z		
_	S Sod -	22	23		
Tota	solved solids in ppm	103 ^f 101 ^g	F. S. F.		
	Other canstituents	Fe <u>0.06</u>	Fe 0.05		
	Silica (SiO ₂)	20	81		
II.on	Boron Silica (B) (SiO ₂)	0.0	0.1		
r million	Fluo-	000	0.01		
parts per million		2.0 4.0	0.05		
a	Chlo-	3.5	3.2		
5	Sul - fate (SO.)	6.8	0.15		
stituents	Bicar- bonate (HCOs)	1.18	11:11		
Mineral canstituents in	Potas- Carbon- E	8	00.00		
, M	Potas-	4.1	1.6		
	Sodium (Na)	7.5	7.1		
	Magne- Sign	6.1	5.7		
	Calcium Magne- (Ca) Sium (Ma)	12	11		
	° E	7.8	7.3		
	Specific canductonce (micromhos at 25°C)	139	132		
	Dissalved co			P	
	Disso			Station discontinued	
	Te Ten	-		n disc	
	Dischorge Temp			Statio	
	Date and time sampled	1963	6/21-30	7/1	

o Field pH.

Laboratory pH.

Sum of calcium and magnessum in epm.

Sum of calcium and magnessum in epm.

Sum of calcium and magnessum in epm.

Iron (Fe.), aluminum (A.), reported here as $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

Cantrol States anded by United States Geological Survey, Quality of Worst Branch (USS), United States Manual States Service (USPHS); San Bernardina Cantrol States Service (USPHS); San Bernardina Cantrol States Service (USPHS); San Bernardina Calculation (USBR), United States Service (USPHS); San Bernardina States and Service (USPHS); San Service (US

CENTRAL VALLEY REGION (NO. 5)

	_		_		_												
		Hardness bid Coliform Analyzed os CaCOs ity MPN/mi by f	USOS														
		MPN/mi															
		- A - C		1,0	2	140		D	her	9	00.	ą	01	÷	٥	2	
		Hardness os CaCOs Totol N.C.	E dd	-	D	٥		0	0	c	-	=	=	-	(0)	-	
			Edd	148	53	35		7	4	70	3		,÷	2	76.7	Lt	
	ć	P P P P P P P P P P P P P P P P P P P		23	92	€		2		67	13	17	â	53	***	ā	
	Totol	solved solids In ppm										91, [†]				82F	
		Other constituents										ABS 0.00				Abs 0.00	
		Silico (SiO ₂)										N .				21	
	ion	Boron (8)	1		<u>ا</u>	0.0		0.0	0.0	0.0	0.0	27	31	0:1	81	0.5	
	per million	Fluo- Fide (F)										1.0				0.0	
THE THE PROPERTY OF THE PARTY O	equivalents per	rots (NOs.)										0.0				0.8	
anono l	ovinge	Chio-		4.8 0.14	5.6	80.0		5.6	0.12	5.9	0.0	190	0.12	01.0	0.08	2.8	
7 10	Ē	Sul - fots (SO _s)										5.0 0.10				1,.0	
100	stifuent	Bicar- bonate (HCO ₄)		27.0 50.03	76	0.74		76	76	89 1.46	95	1.13	92	1.13	1.07	1.05	
2000	Mineral constituents	Corbon-		00.00	00.0	00.00		0.00	0.00	00,00	00.00	100.0	0.00	90.0	2.00	00.00	
	Min	Potas- sium (K)										9.5				1.1	
		(No)		5.00	8.4	0.23		8.1	0.35	9.33	0.71	12.0	6.1	0.0 M.:0	1	450	
		Magne- sium (Mg)										752				41.0	
		Calcium Magne-		0. A.	1.05	6.0		11.1	Jan.	1.40	0.83	1.80	1.17	1.0	0.1K	0.30	
		I d	_	1	31.	12		7.7	1	12	7.			11:	Side	13	
	Spacific	(micromhos pH ot 25°C)		3	141	56		148	1165	1,74	107	127	1217	134,	122	ĥ	
-		open (r		96	3	56		100	8	×	88	1.00	÷i6	e.	300	101	
		Disso		4.6	10.2	10.1		17.7	0.01	10.7	5.5	10.0	0.6	4.7	9.8	9.6	
		Te of		£	===	-53		14.5	34	25	475	-	99	3	69	89	
		Dischorgs Temp In cfs in of		15,400	6,950	31, 300		3,660	24,100	7,100	39,200	17,5000	8,779	7,5980	092.7	9,130	
		ond time sampled	2,462	10/ 7	11/26	12/18	200	1/15	2/17 Octh.)	3/19	1030	5/14	6/3	1/R 08%0	8/6	01/10	

Hq blar P

Laborotory pH

Iron (Fe), aluminum (A), arsanic (As), copper (Cu), lead (Pb), mongonase (Mn), zinc (Zn), and hasavalent chromium (Cr. 10), reported have as 0.0 except as shown. Sum of colcium and magnasium in opm.

Darived from conductivity vs TDS curves

Determined by addition of analyzed constituents

Gravimatric datarminotion.

Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

Minner londy stars made by United States Geological Survey, Opality of Water Benefic Mostly, United States States Department of the Internet, States Department of the Internet (SECEC), Minted States States of Substance of Substance (MSMD), Los Angeles, Department of Mater and Power (LADMP), City of Long Benefit, Department of Mater Missuares (DMR), as indicated.

Public Medial, (LBDPH), Finited Face Led Benefit States of Substance of Substances (DMR), as indicated. In an analysis of the States of Substances (Substances Substances Subs

ANALYZE OF ENHACT WATER

CENTRAL VALLEY REGION (NO. 5)

		Tur- bid- Coliformh Analyzed ity MPN/mi by i		17.75														
		Coliformh MPN/mi			Median.	Max 10.0	MIT LICE											
		Pid- bid- ity			- 9	82	~		100	- 9	ē.	-		8	3	9	10	
		Hordness b	O E D E		-	0			-	^		_	ē	100	-	100	-	
		Ho Se	Total		740	57	837		59		7.	-	52	25	3	24	3	
		Sod -			53	56	2.1		40	₹	-	4	7	₹.		1/1	£	
		solids	mdd ui										TOSE				1 Pf 1106	
		Other constituents											FPh 11,10 Ar 11,00 ABS 0.00				PO ₄ 0.34 As 3.00 ABS 0.00	
		Silica	(2015)										쥖				뒥	
		5	<u>a</u>		0.1	0.0	0.1). (0.0		il.	9	:	<u> </u>	0.0	il	
. 14b)	millian	Fluo-											10.0				- E	
JCH (S'EA	parts per millian	- N											0.0				0.0	
JUSA TROU	۵	Chlo-	(0)		2:5	5.0	5.8		11.7	9.00 0.15	7:5		0.13	6.8	6.0	0.15	11:0 11:0	
VE COL	Ē	Sul -	(80,										8.0				0.12	
IVER ABC	constituents	Bicar -	(нсоз)		177.0	1.29	62		1.8	82	25.	61 1.10	70	11.48	1.28	74	10.1	
SACRAMENTO RIVER ABOVE COLUSA TROUGH (STA. 14b)	Mineral con	Corban	(°00)		0.00	00.00	00.0		0,40	100	000	10075	00.0	00.0	00.0	00.0	18:	
DACR	Σ	Potos-	(¥										0.04				1.1	
		Sodium	(0 N)		7.6	9.3	9.3		9.7	0.78	112	1.0	7.8 0.34	11	0.36	8.3	5	
		Magns	(Mg)										5.4.0 0.46				7.7	
		Calcium	(00)		0.80	1.17	0 r. c		111	1.21		16.6	0.65		1.16	1.14	210	
		F	a/b		7.0	7.5	55		7:50	7.7	7.5	34.	1.	313	1:) (C	7.5	
		Specific conductance (micromhos			114	152	137		156	1,51	102	Ē	52	181	149	146	158	
		D	%Sat		47	=	91		37	101	35	%	107	88	ž.	5	£	
		Discolved	ppm %Sat		8.8	10.1	9.6		14.1	11	10.6	1	10.5	8.1	8.8	8.7	8.3	
		Tenp in of			8	16	55		27	3,	51	3	3	89	19	89	19	
		Discharge Temp			21,600	7,2.	22,000		11,000	3,800 (M.D.)	7, 160 (M.D.)	6, DU (M.D.)	16,300	10,800	7,570	6,600	10,120	
			P.S.T	1,162	10/17 08jo	77/11 05:00	12/18 5005	203	1,15	13	0840	4 16 0°5	5/1 ⁴ 0850	6.3	07/8	8 6	3/10	

Labaratory p.H.

Sum of calcum and magnessum in epm. It is a few managenese (Mn), 2 mc (Zn), and hexavolent chromium (Gr⁺⁶), reported here as $\frac{0.0}{0.00}$ except as shown. Sum of calcium and magnesium in epm.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves.

Gravimetric determination.

h Annual median and range, respectively. Colculated from amalyses of duplicate monthly samples made by California Department of Public Health, Division of Leboratories, or United States Public Health Service.

Mineral analyses mode by United States Geological Survey, Quality of Water Branch (USGS); United States Organization of Reclamation (USBR); United States Public Health Service (USPHS); San Benerative County Flood Counted District (SECFCD); Metropolition Water District of Southern California (MMD); Las Angeles Department of Mater and Power (LADMP); City at Los Angeles, Department of Public Health (LADPH); City of Lang Beach, Department of Public Health (LADPH); Terminal Testing Leboratories, Inc. (TTL); or California Department of Water Resources (DMR); as indicated.

CENTRAL VALLEY REGION (NO. ')

ſ	_	D	1															
		Anaiyzsd by 1		:														
		Hordness bid Caliform os CoCO ₃ 11y MPN/mi			M 1 &	Max' 2,4	Mi 2.5											
		bid -			~	U	,		~	Ĩ.	CU	4	9	0	7	-7,	4	
		0000	ppm ppm		+	*	-		^		3			=		٥	0	
			PPA		17-	35	917		3	1,5	1,3	35	36	4.3	61	7.	3.	
		sod -			-	18	16		13	F	17	3	13	ă	8	59	28	
	Totol	solved spilos											57 [£] 60 [£]				107 103	
		Other constituents											Pol, 0.00				PO _{1, 0.05} As 0.00 ABS 0.00	
		Silico	•										77				糾	
	000	E_			9	.7	75		3	3	°:	0.0	3	0.0	ᆌ	0.1	1.0	
	million in million	Fluo- ride											00.0				0.0	
TA . 11)	ports per million	1 of o		-									1.0					
SACRAMENTO RIVER AT DRITA (FTA. 11)	od Since	Chio-	(j)		30.	0.4	5.5		0.12	10.0	0.12	0.9	1.5	4.09	5.4	0.17	4.8	
ER AT D	5	Sul - fots	(80%)										0.02				0.08	
ENTO RIV	stituents	Bicar - banats	(HCO ₃)		1.34	3/8:	1.02		1,00	20.0	0.98	0.70	46	25	70	130	17	
SACRAM	Mineral constituents	Corbon-			100	000	00.00		00.00	100	00.0	50.0	00*0	00.00	00.00	00.00	00.00	
	Min	Potos-	(X										0.01				0.0	
		Sodium			36.5	₹°.	2.12		H. 4	7.1	4.1 0.18	0.11	0.11	4.4 0.19	7.0	9.0	0.41	
		Mogns.	(Mg)										6.2				6.8	
		Colcium			1:	1.0	0.03		1.9	39.0	3.85	69.1	12.7	1	1.22	2.6.0	0.50	
		Ĭ.	4/10		-	1.1	37		7:	15:7	3.1	7.4	7	:- h	1	7-6	000	
		Spacific conductance (micramhos of 25°C)			-	7	100		607	68	101	75	42	76	125	136	143	
			%Sot		107	E	\$		3	102	757	105	103	101	105	108	106	
		Dissolvsd	E dd		11.	11.7	12.2		12,6	11.8	12.8	11.9	11.2	10.3	8.6	9.6	7.6	
		Te or			25	ů,	77		777	9	77.77	T+1	20	55	79	19	69	
		Oischorgs Temp			2	08 1	856		3/1	4,75	844	3,940	2,300	978	420	282	230	
			P.S.T.	1 Now	1 5	1, 11,	17, 17	1963	1/2 0910	2 13	3/5	1,50	5/1	5/3	2/9	8/6 0915	9/10	

b Loborotory pH.

c Sum of calcium and magnesium in epm.

Though (STA. 15b)

ANALYSES OF SURFACE WATER

c. Jum at colcum and magnesium in epm. d. Iran (Fe), aluminum (A1), arsenic (As), capper (Cu), lead (Pb), manganese (Vhn), zinc (Zn), and hexavalent chromuum (Cr*6), reparted here as $\frac{0.0}{0.00}$ except as shown. Derived from conductivity vs TDS curves.

Grovimetric determination.

Datemined by addition of analyzed constituents.

h Amuel median and range, respectively. Calculated from analyses of duplicate manifyly samples made by Calcination Department of Public Health, Division of Laboratories, or United States Public Health Service (USPS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Geological Survey, Quality of Water Banach (USCS); United States Department of Water and Power (LADMP); City of Los Angeles Department of Water and Power (LADMP); City of Los Angeles Department of Water and Power (LADMP); City of Los Angeles Department of Water and Power (LADMP); City of Los Angeles Department of Water and Power (LADMP); City of Los Angeles Department of Water and Power (LADMP); City of Los Angeles (USPR);
and the first Survey Challet of Water Bound States Designation of the American States Survey Challet of the State States
CENTRAL VALLEY REGION (NO. 5)

			Andlyzed by i			USGS													
		Æ	bid - Coliform:			Median 230.	Maximum >7000.	Minimum 6.2											
		Ter	- bid -			10	15	25		10	200	15	100	3	20	_	-7	50	
			80 Z	mdd.		0	0	0		-	m	0	0	0	0	0	0	0	
				ppm		63	19	82		59	24	75	35	54	24	59	62	72	
		Per	sod -			82	98	8		27	50	28	8	21	88	59	2	32	
		Total	solids model			108°	116e	e 49		109e	39 e	136°	57 e	77 f	8	1136	11^{hc}	134 f	
			Other constituents											AS 0.00 ABS 0.0				AS 0.00 ABS 0.0.	
			Silico (SiO ₂)											17				8	
		million	Boron (B)			1.0	0.3	0.1		0.1	0.1	0.0	0.1	0.0	0.0	0:0	0:0	0.1	
	ports per million	per mil	Fluo-	E										0.2				0.2	
TA. 15b	orts per	equivalents	1rote	(NO3)										0.4				0.03	
PORT (S		Ainba	Chlo-	(3)		7.2	0.28	3.5		7.9	2.8	0.31	2.5	4.5	6.2	8.8	8.5	0.34	
T FREE	5	=	Sul -	(80%)										5.0				9.0	
RIVER A	9.00	11100111	Bicar- bonate	(HCO3)		1.36	78	94.0		1.28	26	1.54	43	56	88	80	1.28	101	
SACRAMENTO RIVER AT FREEPORT (STA. 15b)	Minasol		Corban-			0.0	0.0	0,00		0.00	00.00	00.00	0,00	00.00	00.00	000	00.00	0,0	
SAC	Mine	MID	Potos-											0.8				1.6	
			Sodium (Na)		_	0.48	25.0	0.21		11 0.48	2.7	13	3.9	5.6	9.5	0.48	12	16	
			Mogns											4.3				9.0	
			Calcium (Ca)			1.26°	1.21	0.76°		1.300	0.4B°	1.50€	0.70°	111	1.080	1.18	1.23	15 0.75	
		_	I (1)			7.4	7.5	7.2		7.3	7.1	7.7	7.3	7.3	7.3	7.7	7.3	7.3	
		Specific	(micromhos of 25°C)			164	175	97		165	65	506	87	11^{h}	148	171	173	212	
				%Sot		96	93	95		76	103	16	66	100	95	96	96	94	
			Diesolved	Edd		8.8	4.6	10.8		12.2	11.9	10.1	11.0	10.1	8.9	8.7	8.5	7.7	
		_	Temp in of			98	65	20		75	64	25	52	59	99	38	7	88	
			Dischorge Temp			9800	16100	38700		16800	78800	15000	78900	39900	25800	13000	11500	16000	
			and time sompled	7.3.1	1962	10/3	11/8	12/5	1963	1/15	2/4	3/14	4/11	5/16 0815	6/4	7/8	8/8	9/11	

Laboratory pH.

c Sum of calcium and magnesium in epm.

c. Sum of calcum and magnesium in spin.
d. Inon (Fe), alumnum (A1), arsenic (A2), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr⁺⁶), reported here as $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division at Laboratories, or United States Public Health Service.

in Minner analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Survey of Reclamation (USBR); United States Public Health Service (USHS); San Bennardina County Flood Control District of Southern California (WMD); Las Angeles Department of Water and Power (LADMP); City of Los Angeles, Department of Public Health (LADPH); City of Los Angeles, Department of Water Resources (DWR); as indicated.

CENTRAL VALLEY REGION (NO. 5)

SACRAMENTO RIVER AT FREEPORT (STA. 15b)

			Anolyzed by i	USGS														
		-	Ity MPN/ml															
		Top I	y - A															
			N C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
				65	90	53	55	55	53	53	45	54	39	22	26	8	8	31
-		9	a pos	59	21	25	56	22	56	56	8	5₹	8	25	25	88	56	19
		0.0	solids In pom	113 ^f	57°	99°	100 ^f	101 1008	99°	396	84f	99g ₁₀₂₈	76f	94 f	102 ^f	115 ^f	1111 ^f	59 ^g
			Other constituents	Fe 0.01	Fe 0.13 Color 33	Fe 0.06 Color 17	Fe 0.00 Color 5	Fe 0.01 Color 5	Fe 0.02 Color 6	Color 1	Fe 0.00 Color 1	Fe 0.00 Color 1	Fe 0.19 Color 35 (unfiltered)	Fe 0.02 Color 12	Fe 0.00 Color 2	Fe 0.00 Color 2	Fe 0.00 Color 2	Fe 0.09 Color 65
			Silica (SiO ₂)	23	13	22	21	22	21	8	20	23	119	22	22	54	33	34
	_	00	Boron (B)	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.0	0.0	0.1	0.1	0.0	0.1	0,1	0.0
	E SIO	per million	Fluo- ride (F)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0
SACRAMENTO RIVER AT FREEFORT (STA. 178)		equivolents p	rrate (NO _S)	0.00	2.5	2.0	1.4	1.3	1.4	0.03	0.03	0.03	0.03	0.03	0.02	0.0	0.00	0.03
EPORT (S	٩) AI n b	Chio- ride (CI)	7.8	2.8	5.6	5.9	6.0	5.9	6.4	5.6	6.8	0.12	5.0	6.4	7.6	7.9	3.3
AT FRE	n e	-1	Sui - fote (SO ₄)	8.4	0.10	7.4	8.4	0.16	7.0	8.0	5.8	7.0	5.4	6.8	8.4	9.8	9.0	3.8
O KIVER	constituents		Bicar- bonate (HCO _S)	78 1.28	36	1.13	71 1.16	72	71 1.16	65 1.07	57 0.93	1.11	0.82	66 1.08	72 1.18	82	1.28	36
ACHAMEN	Minerol co		Corbon- gie (CO ₃)	00.0	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.00	00.0	000	00.0	0.0
ñ	ž		Potos- sium (K)	0.03	1.4	0.04	0.00	1.6	1.7	0.03	0.0	0.03	1.4	1.6	0.04	1.6	1.5	0.03
			Sodium (No)	11 0.43	0.17	8.4	9.0	9.6	0.39	8.7	6.0	8.3	5.2	7.8	8.8	11 0.48	10	3.4
			Magne- sium (Mg)	6.3	3.2	5.5	6.0	6.1	5.6	0,40	0.36	5.8	3.6	04.0	5.7	6.1	6.0	0.24
			Colcium (Ca)	13	7.1	0.60	12	0.60	0.60	13	0.55	0.60	9.7	0.60	13	14	14 0.70	0.38
		٥	Ŧ.	7.2	6.9	7.1	7.7	7.4	7.4	7.1	7.3	7.5	7.3	7.3	7.6	7.7	7.5	7.2
		Specific	(micromhos at 25°C)	165	82	145	148	148	145	140	113	137	106	134	153	168	166	82
		Dissolved	oxygen ppm %So															
		Te Bo	e e															
		Dischorge	ın cfs	11400	67200	28300	17200	15500	16600	20300	30900	21300	1,7500	34,500	22800	17100	16800	71800
			sampled P.S.T.	10/1 - 13	10/17 - 19	10/50 - 31	11/1 - 10	11/11 - 20	11/21 - 30	12/1 - 3	12/4 - 10	12/11 - 16	12/17 - 21	12/22 - 31	1/1 - 10	1/11 - 20	1/51 - 31	2/1 - 10

Field pH

Sum of calcium and magnesium in epm. Laboratory pH

Jum of conclum and magnessmen in spin. It is copper (Cu), load (Pb), manganese (Mn), zins (Zn), and hexavalent chromium (Ci *3), reparted here as 0.0 except as shown one of the conclusion of t

Datemined by addition of analyzed constituents. Derived from conductivity vs TDS curves

Gravimetric determination

Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division at Laboratories, or United States Public Health Service.

Mineral analyses made by United States Geological Survey, Calogiry of Water Benefit (USSS), United States Public Health Service (USPHS); San Benefitine County Flood Comital States and Power (LADMP), City of Los Angeles, Department of Water and Power (LADMP), City of Los Angeles, Department of Public Health (LADPH), City of Long Beach, Department of Public Health (LADPH), City of Long Beach, Department of Public Health (LADPH), City of Long Beach, Department of Public Health (LADPH), Terming Laboratories, Inc. (TIL) or California Department of Water Resources (DWR), as indicated.

Burniu of Reclamation (USBR), United States Public Medidi Service (USPMS), Sun Bernardino County Fleed (LADMP), City of Los Angeles, Department of Public Medidi & ABPH), City of Ling Reach, Department of red

CENTRAL VALLEY REGION (NO. 5)

		Analyzed by 1	uscs					-									
	•	bid - Coliform' ity MPN/mi npom					·					·					
	ŗ	- bid -1y magn															
		N C DE	0	0	0	0	10	0	0	0	0	5	0	0	0	0	
			51	57	8	70	57	2	36	84	45	22	27	20	75	79	
		e od -	د1	21	23	23	19	50	18	19	19	18	, 5¢	2.2	33	88	
	Totol	solved solids in ppm	92 ^f 918	103 ^f 968	104 f	121 ^f 123 ^g	92 ^f 93 ^g	87 [£]	999 108	82f 818	79 ^f 808	85 ^f 808	79g	1 7 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	120 f 120 g	118 f	
		Other constituents	Fe 0.07 Color 10	Fe 0.17	Fe 0.04	Fe 0.03	Fe 0.06 Color 25	Fe 0.04 Color 28	Fe 0.01 Color 36	Fe 0.03 Color 15	Fe 0.04 Color 6	Fe 0.03 Color 5	Fe 0.02 Color 5	Fe 0.04	Fe 0.02 Color 7	Fe 0.02 Color 6	
		Silico (SiO ₂)	50	24	77	23	118	19	16	21	19	8	18	81	8	21	
	ion	Baron (B)	0.0	0.0	0.0	0.1	0.0	0:0	0.0	0.0	0.1	0,1	0.0	0.1	0.1	0.1	
(pen	per mil	Fluo- ride (F)	0.2	0.1	0.2	0.2	0.2	0.00	0.0	0.00	0.2	0.0	0.2	0.03	0.1	0.2	
contin	ě	Ni- trate (NO ₃)	2.7	4.3	0.02	1.4	0.02	0.03	2.1	0.02	0.05	0.00	0.05	0.03	3.1	0.03	
(STA. 15b continued)	ports p	Chio- ride (CI)	5.8	5.4	5.0	8.6	5.9	5.2	3.0	3.5	0.12	5.1	4.5	6.5	0.31	0.28	
EPORT (n s	Sul - fore (SO ₄)	6.4	6.0	6.8	0.23	9.0	7.0	6.0	0.4	5.2	6.8	7.0	9.6	12 0.25	12 0.25	
R AT FRE	constituents	Bicar - bonate (HCO ₃)	64 1.05	74	78	85 1.39	63 1.03	61 1.00	4.4 0.72	86.0	57 0.93	57 0.93	54 0.89	1.02	1.28	79	
SACRAMENTO RIVER AT FREEPORT	Minsral col	Carbon- ofe (CO ₃)	0.0	00.0	00.0	0.00	00.0	00.0	00.00	00	0.00	0.00	0.0	0.0	0.00	0.00	
ACRAME	M	Potas- sum (K)	0.03	0.03	0.03	1.4	0.04	0.04	1.4	0.03	0.0	0.8	0.5	0.03	1.4	1.4	
s		Sodium (Na)	6.5	7.2	7.3	0.44	6.3	6.0	3.8	5.4	5.1	5.4	6.1	9.0	13	12 0.52	
		Magne- sum (Mg)	5.7	6.7	6.1	7.4	6.6	07.0	3.9	5.6	4.1	5.2	0.34	5.6	0.59	7.5	
		Calcium (Ca)	11 0.55	0.60	14 0.70	16 0.80	12	0.60	9.0	0.50	0.55	0.60	0.50	0.55	14 0.70	13	£.
	م	i i	7.4		7.5	7.4	7.4	7.4	7.2	7.4	7.7	7.4	4.6	7.1	7.2	7.4	6/30/
	Specific	conductonce (micromhos at 25°C)	135	149	155	189	135	127	8.	117	113	115	113	143	061	184	DISCONTINUED
		Diesolved osygen ppm %Sof															STATION DISCOR
		Orschorge Temp in efs in OF AVG. M.D.	00695	39000	27600	16600	35800	η 1600	71900	99600	47700	1,3800	39800	28600	17200	13400	
		ond time sompled P.S.T.	2/11 - 11/2	2/19 - 28	3/1 - 7	3/8 - 22	3/23 - 31	4/1 - 7	4/8 - 19	4/20 - 30	5/1 - 10	5/11 - 20	5/21 - 31	6/1 - 5	6/6 - 20	6/21 - 29	

o Field pH.

Loboratary pH.

Sum of calcium and magnessum in epm.

32505-LH 0-61 200 JRU

Sum of calcium and magnessum in epm. Sum of Calcium and provided (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr⁺⁶), reported here as 0.0 except as shown. Iron (Fe), aluminum (Al), orsenic (As), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr⁺⁶), reported here as 0.0 except as shown.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves

Gravimetric determination.

More on only ses mode by United Stores Geological Survey, Quality of Water Branch (USGS); United Stores Department of the Interior, Bureau of Reclamation (USBR); United Stores (USPHS); San Bernardina County Flood Control District (SBCFCD); Matropoliton Water District of Southern California (WMD); Los Angeles Department of Water and Power (LADWP); City of Los Angeles, Department of Water and Power (LADWP); City of Los Angeles, Department of Water and Power (LADWP); City of Los Angeles, Department of Water Resources (DWR); os indicated. h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Loboratories, or United States Public Health Service.

ANALYSES OF SURFACE WATER TABLE D-3

		Anolyzed by 1	.5		-											
		Hordness bid - Coliform Analyzed os CoCO ₃ Ity MPN/mi by i Total N C ppm ppm		Media.	Max' us.	Mind un										
	Į.	- bid - ty mgg u		-			-	÷	~	8	=	٥			-	
		Hordness os CoCO ₃ Total N C ppm ppm					-	-	-		-	-				
		Hord os C Total ppm		-		=	-		-	-	-		2			
	ď	sod -			=	-		•	-						-	
	Total	solved sod - salids ium													- 8	
		Other constituents									A				ABS '	
		(SiO ₂)									=1				-	
	000	5		-	3	7.0	7		-	-	-	3	-		6	
13)	million It mill	Fluo- rids (F)													5.	
ACHAMBER RIVER CAR BELLE COTTY (CIA. 15)	squivalents per million	rots (NO ₃)). O.CR				= 5	
101 41 001	a quive	Chio- rids (CI)		1.	: -	: :		: -	J	1.	1	100	1	400		
AR BA	5	Sul - fots (SO ₄)														
RIVER O.	Mineral constituents in	Bicar - bonate HCO ₃)		1.15		13	- 1	4:	1:1	1:	2 2		1:	1 × × 1	.	
WAR. I'D	arol con	Potas- Corbon- 6 sum (K) (CO ₃)		1=	1:	ļ.	- Jac	×	-0.	12	7° X	18	~ ×	1	15	
	Min	Potas- s:um (K)									- -				<i>i</i> }.	
		Sodium (Na)		1		7.	1.	34	1:	:\];	- 2.		1.	1.		
		Magne- sium (Mg)									+				~ .	
		Calcium (Ca)		-	[:	1	1.	1:	Ī.	ja.	7	į.	j.	1. 1	10.	
				1:	1:	1.	11.	12.		40	1	1:	1.	1:	1.	
	9,000	Dissolved conductores pH (micromhos pH of 25°C)						**					3	19.5	3	
		o Sat		-				-	3.	×		-				
		Dissolvs d oxygen ppm %Sat		· -			-	-	2		-		-1		9	
		Te or		-			-					-	-	~	~	
		Dischorgs Temp		-		4.		-					÷.		1	
		Dote ond time sompled P.S.T	1	el	88	= [81	-	1	-	Ę		88	s.J	-5	

Hd blan 4 o

b Lobarotory pH

c. Jum of salicum and magnessum in spin.
d Iron (Fe), oluminum (A1), arsenic (A2), coppor (Ca), load (Pb), manganese (Mn), zinc (Zn), and herovalent chromium (Ci **), reported here as 00 except as shown d Iron (Fe), oluminum (A1), arsenic (A2), coppor (Ca), load (Pb), manganese (Mn), zinc (Zn), and herovalent chromium (Ci **), reported here as 00 except as shown c. Sum of coleium and magnesium in epm.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Grovimetric determination.

32:05-0-H 6-61 200 3PO h Annol median and map, respectively. Calculand from analyses of diplicate monthly samples made by Calcunia Opparment of Public Health, Division of Laboratories, at United States Dublic Health Service (USPHS); Son Bernodian Caunty Flood Control Dubly, Mestegation Water States Chelogical Stavey, Data of Many Lass Acquises Department of Water and Power (LDMP), City of Los Acquises Department of Water and Power (LDMP), City of Los Acquises Department of Water Acquise and Power (LDMP), City of Los Acquises Department of Public Health (LDMP), Faminal Example Resistance Inc. (TLL), or Calculan Dispartment of Water Resources (DWR), as indicated.

CENTRAL VALLEY REGION (NO.

Anolyzed by 1 Coliform^h MPN/mi Maximum Hardness as CaCOs Total N C Cent sod -Tatot dis-solved solide in ppm constituents As 1 Other (Silico (SiO₂) 24 8 Boron (B) 0.1 01 9 3 equivalents per million ports per million Fluo-ride (F) 0.0 trote (NO3) m 0 SACRAMENTO RIVER AT KESWICK (STA. Chlo-Sul -fats (SO₄) Mineral constituents Bicor-bonate (HCO₃) (00) Carbon-0.0 Potas-sum (K) 0.00 Sodium (No) Mogns-sium (Mg) 4.6 Calcium (Ca) 7 3 1 10 Ä Specific conductance (micromhos at 25°C) 307 %Sat Dissolved ま mdd 10.1 Temp in of Dischorge in cfs 9,980 (M.D.) Date ond time sampled P.S.T.

Laboratory pH.

Sum of calcium and magnesium in epm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination

Annual median and angesterively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laborotories, or United Stotes Public Health Service.

Mineral manyses made by United States Geological Survey, Dudity of Water Misses, Barach (USSS), United States Department of Mater and Power (LADMP), City of Los Angeles, Department of Mater and Power (LADMP), City of Los Angeles, Department of Mater and Power (LADMP), City of Los Angeles, Department of Public Health (LADPH), City of Long Beach, Department of Public Health (LADPH), City of Long Beach, Department of Mater Resources (DMR), as indicated.

except as shown.

8

32505-0-H 6-61 200

SACRAMENTO RIVER NEAR MALLARD SLOUGH (STA. 15¢) ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (NO. 5)

							***************************************				100	-			O.		-		_
	So	ecrfic				Miner	Mineral constituents		ç.	equivalents per million	per m	Illion			Total	Per-	<u></u>	20	Æ
Discharge Temp Dissol	gen %So	conductance pH (micromhos of 25°C)	Coleium (Co)	Mogne- S sium (Mg)	Sodium Po	Potos- Corban- sium ate (K) (CO ₃)	co ₃) (F	Bicor Su bonote fo (HCO ₃) (S	Sul - Chio- fate rids (SO ₄) (CI)	o- N:- ls trote (NO ₃)	Fluo- ride (F)	Boron (B)	Sifico (SiO ₂)	Other constituents	solved and -	sed - os C	Total N.C.	bid Coliform Anolyzed	E E
8		648			8				.¥I	9	_				88	67			USBR
63		619			8				ਜ। 	131					914	834			
63		239							ا به	27	_				136				
17		13720			2208				.ā:1	£206					10564				
29		325			62				.ail	143					216,	39			
63		306			el				<u>۳۱</u>	33					208	17			
%		252			<u>ا</u> م				cv1	53					168	35			
17		155			al				AI	16					911	33			
83		185			15				δi I	<u>اي</u>					121	35			
98		6421			161				 	307					796	95			
17		05 77			697					199					5856	8			
83		14877			642				M1	0521					5668	54			

a Field pH.

b Laboratory pH.

Sum of colcium and magnesium in epm. It is copper (Cu), lead (Pb), monganese (Mn), zinc (Zn), and hexavalent chromium (Gr *6), reparted here as 0.0 except as shown. Iran (Fe), oluminum (Al), arsenic (As), copper (Cu), lead (Pb), monganese (Mn), zinc (Zn), and hexavalent chromium (Gr *6), reported here as 0.0 except as shown. c Sum of calcium and magnesium in epm.

Derived from conductivity vs TDS curves

Determined by addition of anolyzed constituents.

32505-D-8 6-61 200 SPO Annual median and range, respectively. Colculated from analyses of duplicate manshly samples made by California Department of Public Health, Divission of Labbrataires, or United States Public Health Service (USPHS); Son Bernordino County Flood Manner and Interior, Surves of Reclamation (USBS); United States Resident Service (USPHS); Son Bernordino County Flood County Division States (SeCPCD); Metropolitar Water District (SeCPCD); Metropolitary Water District (SeCPCD); Metropolitary (SecPCD); Metro

CENTRAL VALLEY REGION (NO.

SACRAMENTO RIVER AT RIO VISTA (STA. 16)

		Analyzed by i			nses													-
		os CaCO ₃ II MPN/mi			Median 230.	Maximum >7000.	Minimum 2.3											
	1	- piq			50	R	80		15	8	25	110	8	200	8	8	20	
		000 N	Edd		0	0	0		0	m	0	-3	0	0	0	0	0	
			Edd		63	63	19		8	20	98	59	51	57	99	73	73	
		P = E			8	53	27		2	25	31	8	23	53	R	33	32	
	Total	solids n spids			113e	113e	108e		109°	э64	162 e	89 e	87 F	106 °	118 e	120 ^e	135 f	
		Other constituents											AS 0.00 ABS 0.0 POu 0.15				AS 0.01 ABS 0.0 PO4 0.25	
		Silica (SiO ₂)											17				18	
	million	Boron Silica (B) (S:O ₂)			0.0	0.0	0.5		0.1	0.1	0.0	0.1	0.2	0.0	0.0	0.0	0.0	
10	per mi	Fluo- ride											0.2				0.0	
* .VTC	equivolents per million	trate (NOL)	ŝ										0.5				0.03	
Y TOTA	equive	Chio-			8.5	10 0.28	8.3		7.8	0.12	15	6.0	6.4	9.0	10 0.28	0.31	12 0.34	
ALOLY OLD AN ANALA	Ē	Sul - fote (SO.)	1000										8.8				12	
	tituents	Bicor - bonate (HCO.)	S.		1.43	1.29	77.		1.28	33	107	01.10	62	70	1.34	80	1.62	
CACIMIENTO	Mineral constituents	Carbon- ate (CO.)	ŝ		0.0	0.00	000		00.00	000	00.00	0.0	0.00	0.0	0.0	0,00	0.00	
2	Mine	Potae- Sium (X)											0.03				1.6	
		Sodium (No)	1		0.52	12 0.52	10		12 0.52	0.20	0.78	6.9	0.31	11 0.48	13 0.57	0.57	0.70	
		Magne- sium (Ma)											5.1				8.0	
		Colcium N	1		1.26	1.26°	1.220		1.20°	0.59°	1.72°	1.18	270	1.15°	1.31 c	1.28c	0.30	
ŀ		를 하는	+		7.4	7.3	7.7		7.8	7.1	7.5	7.3	7.3	7.3	8.0	7.4	7.5	
	Spacific	conductance pH (micromhos a at 25°C)			176	771	169		171	12	253	139	131	991	185	188	217	
Ì			50		93	62	87		89	86	8.	91	104	35	66	93	88	
		Oisso			9.6	4.7	6.6		10.7	10.3	6.6	7.6	10.5	9.8	89.09	4.8	7.7	
Ì		Teger Por			19	8	50		94	51	52	55	59	99	2	69	72	
		Orecharge Temp in cfs in oF		Tidal														
		ond time sampled		1962	10/3	11/8	12/5	1963	1/8	2/4	3/14	4/11 1215	5/14	6/4 1045	1/8	8/8 1030	9/11	

b Laboratory pH

c Sum of calcium and magnesium in epm.

c. Jum of colcum from ingression in spin. d is of (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chramium (Gr⁺⁶), reported here as $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Annual median and range, respectively. Calculated from analyses of duplicate manifyly samples made by California Department of Public Health, Division of Loboratories, or United States Public Health Service. Gravimetric determination.

32505-D-H 6-61 200 JPU Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS), United States Department of the Interior, Sureau of Reclamation (USBR), United States Public Health Service (USPHS); Son Benardina County Flood Courte District (SQCFCD), Metropolition Water District of Southern California (MOD); Las Angeless, Department of Water Resources (DMR); City of Las Angeless, Department of Public Health (LBDPH); Terminal Testing Laborationies, Inc. (TTL); or California Department of Water Resources (DMR); as indirected.

CENTRAL VALLEY REGION (No. 5)

SACRAMENTO RIVER AT SNODGRASS SLOUGR (STA. 97)

	_	pez/	T	gr:													
		Anoty	_	USBR													
		Hordness bid - Coliform Anolyzed															
	- L	- pid Land															
		Hordness es CoCO ₅															
-		F 8 10															
}	810	solved cont solids tum	-	19	- 53	70		30	25	70	16	50	27	56	- 53	×	_
-	مً	2000	-	72	152	18	_	122	108	168	88	8.	136	124	172	781	
		Other constituents															
		Silico (SiOg)															
	lion	Boron (B)															
million	per million	Fluo- ride (F)															
ports par million		frate (NO _S)		1.2	9:0	0.0		0:0	0.0	0.0	0:	0.0	0:0	0:	0.0	9.0	
l od	equivalents	Chio- ride (CI)		1.3	2	7.9		6.6	7.8	13	000	8.5	77	2.2	al	13	
	c c	Sul - fots (SO ₄)		8.5	<u>F-9</u>	8.5		ट्य	9	16	11	6.7	13	ध्य	11	ন্	
	stifuent:	Bicar- bonota (HCO ₃)		92	83	27		77	51	8	삤	1/2	76	짇	79	81	
	Mineral constituents	Corbon- of (COs)		0.0	0:0	0:0		0.0	0:0	0:0	0.0	0:0	0:0	0.0	0:0	0:0	
:	Min	Potos- srum (K)		1.2	0.78	1.2		1.2	1.2	13	1.2	1.2	1.2	1.2	5.0	1.6	
	Ì	Sodium (Na)		3.0	9	6.9		ट्य	7.6	14	3.0	5.5	킈	01	일	17	
		Mogne- sium (Mg)		8.8		5.0		5.4	5.4	9.5	8.8	9:1	8.1	7.4	7.8	গ্ৰ	
		(co)		6.2	17	10		13	의	16	8.2	=	13	괴	13	11	
		ī		9.9	8.0	7.5		7.9	7.5	8.2	7.2	7.4	8.2	7.9	7.6	7.8	
	Specific	(micromhos of 25°C)		29	171	123		173	137	212	73	112	179	171	061	259	
		Osygen osygen ppm %So															
		T OF		3	8	17		14.3	54	299	51	55	19	69	72	02	
		Oischorge Tamp in cfs in 0F															
		ond time eampied P.S.T	1962	10/15	11/13	12/26	1963	1/14	2/11	3/11	1100	5/13	6/10	7/8	8/12	9/10	

o Field pH

Derived from conductivity vs TDS curves

ANALYSES OF SUFFACE WATCH PROFILE VALLEY RECEIVED (40) ...)

b Loborotory pH

Jun or conclusion and in specifically lead (Pb), manganese (Mn), zinc (Zn), and hexavolent chromium (Cr¹⁵), reported here as $\frac{0.0}{0.00}$ except as shown. Sum of calcium and magnesium in epm

Determined by addition of analyzed constituents.

Grovimetric determination

UN US 6-6-1 HO-2025 Annual median and range, respectively. Colculated from analyses of duplicate monthly samples mode by Coldonia Department of Public Health, Division of Laboratoriers, or United States Public Health Service

Mineral analyses made by United States Department of Many Load Angeles Department of Many Load Angeles, Department of Many Load Angeles, Department of Many Load Angeles, Department of Many Load Angeles Department of Many Load Angeles Department of Many Load Angeles, Department of Many Load Angeles (Many Load Angeles), Terminal Testing Laboratoria, Laboratoria, City of Load Responses, Inc. (TL), or Coldonia Department of Mare Responses, No. 2017, and Load Angeles, Department of Many
ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (NO. 5) TABLE D-3

SACRAMENTO RIVER AT TOLAND LANDING (STA. 15a)

		Hordness bid - Caliform Analyzed es CoCO ₃ ify MPN/ml by I by I ppm ppm ppm ppm		USBR							
		Caliform MPN/mi						_			
	T. 10	- piq									
Γ		N COS									
		Hordness es CoCO ₃ Total N C ppm ppm									
		8 0 8 0 9 2									
L	Totol	spids of min		100		128	124	128	152	248	188
		Other canstituents									
		SiO ₂)									
	non	Baron Silica (B) (SiO ₂)									
millian	er mill	Fluo- ride (F)									
parts per millian	squivalents per million	NI- trote (NO ₃)		-							
Da	squival	Chio- ride (CI)									
	Ē	Sul - fats (SO ₄)									
	tituents	Bicor - bonate (HCO ₃)									
	Mineral canstituents in	ote (CO ₃)									
	Miner	otos- C sum (K)									
		mulpo)									
		Adgne- sium (Mg)									
		Coleum Magne- Sodium Potos- Carbon-		_							
		Ŧ.									
	Specific	conductonce (micromhos pH of 25°C)		123		157	145	183	190	320	533
		en (i									
		Dissolved oxygen									
		Temp in OF		†19		99	92	19	22	22	27
		Orschorgs Temp in cfs in of									
		ond time sompled P.S.T	1962	10/15	1963	4/8 1155	5/13	6/12	7/8	8/13	9/10 1440

except as shown.

ng pg

b Laboratory pH.

Sum of colicum and magnessum in Spin.

Iron (Fe), aluminum (Al), arizenie (Ke), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavolent chromium (Cr. "5), reparted here as 0.00

Iron (Fe), aluminum (Al), arizenie (Ke), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavolent chromium (Cr. "5), reparted here as 0.00 Sum of ealeium and magnesium in epm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

³²⁵UHHH 0-01 3XU h Annual median and rongs, respectively, Calculated from analyses of duplicate monthly samples made by Californio Department of Public Health, Division of Loboratories, or United States Dealth Service.

I Mareel analyses made by United States Geological Survey, Quality of Water Branch (USSP), United States Special Control Division of States Department of Water and Power (LADMP), City of Los Angeles, Department of Water States Department of Water (LADMP), City of Los Angeles, Department of Water States Department of Water States Department of Water States (LADMP), City of Long Beach, Department of Public Health (LADPH), City of Long Beach, Department of Water States (States States), and succession of Maree States (Maree States).

CENTRAL VALLEY REGION (NO. 5)

		9		10				_				_]
		Anolyzed	`	USGS															
		Tur- bid-Coliformh ity MPN/mi			Median 146.	Maximum 2,400.	Minimum.2												
		- pag-	E 0 0		10				0		077			150	15	50	50		1
		Hordness b	Totol N.C.		n				0		0			-3	q	٥	8		1
		Hord	Totol		37				158		185			137	182	187	163		1
		Par- cent	Ē		%				28		27			%	34	33	27		1
		Totol Par- dis- solved sod-	E dd ui														259 ^f 251 ^g		
			Other constituents											Tot. alk. 185		Tot. alk. 236	POL 0.45 As 0.30 ABS 7.00		
		00110	S:02)														24	_	1
	1	ion Boron S	(B) (SiO ₂)		0.1				0:		0.0			9	0.0	0:0	킮		
A. 14a)	million	Fluo-	(F)														5.00	_	1
IS) DNI	ports per million		(NO ₅)														0.05		1
ITS LAND	9	Chlo-	(C)		0.14				200		18			16	27.17	1.38	0.56		
AR KNIG	9	Sul -	1018 (SO ₄)														0.23		
OUGH NE	atituent	Bicor-	(HCO ₃)		142				3.34	_	244			3.02	3.67	3.74	3.79		
SACRAMENTO SLOUGH NEAR KNIGHTS LANDING (STA. 14a)	Mineral constituents	Corbon	(CO ₃)		0.00				00.00		00.00			50.07	00.00	0.13	00.0		
SACRA	N	Poto	(X)														0.05		
		n pog	(NO)		9.6				28		31			38 S	1.67	1.83	28		
		Calcium Magne-	(Mg)														1.86		1
		Calcium	(00)		0.7T°				3.15		3.10			2.740	3.64	3.74	28		
		g I	a/p		7.2				7.3		1 2			7.4	7.1	13:	7.6		
		Specific conductance (micrambos	62 15		101				419		787			350	531	524	714		
		D u	%Sat		18				66		95			79	89	73	18		
		Dissolvad	Edd		8.1				12.5		9.8			7.0	5.9	6.2	7.0	 	
		Tan or			57				33		58			7	1/2	75	7/4	 	Ì
		Discharge Tamp in cfs in 0F			FLOODED	NOT	FLOODED NOT SAMPLED		565	FLOODED	198	FLOODED	FLOODED	879 (M.D.)	678	773 (M.D.)	916		
		Dote ond time	P.S.T.	1,202	10/17	11,77	12/1	1961	1/15	2/19	3/21	4/16	5/14	0480	7/8	9/8	9/10 0850		

b Loborotory pH. o Field pH

c Sum of colcium and magnesium in epm.

Super carbon and magnesian in spire. I lead (Pb), manganese (Mn), zinc (Zn), and hexavolent chromium (Gr *6), reported here as $\frac{0.0}{0.00}$ except as shown.

Determined by addition of analyzed constituents. Derived from conductivity vs TDS curves

Grovimetric determination.

ON 002 19-9 B-0-5052E Mineral analyses made by United States Geological Survey, Quality of Water Bromch (USGS); United States Department of the Interior, Bureau of Reclamation (USBR); United States Public Health Service (USPHS); San Bernardine Colorine (States): Les Angeles, Department of Frank Internation States (States California); Cardiscin States (States California); Cardiscin States (States California); Department of Water States (States California); California Department of Water States (States); California Department of Annual median and range, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Laboratories, or United Stores Public Health, Service.

ANALYSES OF SURFACE WATER CREMING VALUE HERON (NO. 5) RAN JOAGUTH HIVER AT ANYZOGH (RIA. 26)

ANALYSES OF SURFACE WATER

17.7 Company (Confidence of the Confidence of th

CENTRAL VALLEY REGION (NO. 5)

SAN JOAQUIN RIVER AT ANTIOCH (STA. 28)

	_	Analyzed by i		SSSN			_									
-		bid - Coliform A		Median (62.	Maximum 1300.	Minimum 13.										
r		- Ped 2- A		2° 2€	25 E	15 M		8	8	35	901	02	35	15	52	9
		Herdness es CeCO ₃ n Total N.C. ppm ppm		26	ឌ	cu		13	778	17	8	9	7	51	88	63
		Hordness os CoCO ₃ Total N.C. ppm ppm		140	82	69		75	88	82	82	75	20	211	154	138
		E C C C C C C C C C C C C C C C C C C C		69	94	82		39	8	04	O ₁	34	82	98	17	67
	Total	solived in ppm		534 e	167 e	124 °		146 e	132 e	158 e	154 e 1	110	% %	422e	еμ16	508 [£]
		Other constituents										PO ₄ 0.15				AS 0.00 ABS 0.0
		Silica (SiO ₂)										17				125
	million	Boron (B)		0.1	0.0	0.0		0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.0
million	per mi	Fluo- ride (F)										0.2				000
ports per million	equivalents	rrote (NO ₃)										0.03				0.0
1°	equiv	Chlo- ride (CI)		222	42 1.18	24 0.68		31 0.87	28	0.90	30	16	17	167	295	225 6.35
	Ë	Sul - fote (SO ₄)										1 ⁴ 0.29				39
	stituents	Bicar- bonats (HCO ₃)		102	81 1.33	77		76	5 ⁴ 0.89	79	76	59 0.97	52 0.85	74	80	92 1.51
	Mineral constituents	Corban- ate (CO _S)		0.0	0.0	000		0.0	0.0	0.0	0 0 0	00.0	0 0	00.0	000	0 0 0
	N.	Potos- sium (K)										1.4				5.6
		Sodium (Na)		146 6.35	$\frac{31}{1.35}$	18 0.78		0.96	19 0.83	25	25 1.09	13	17t 0.61	101	170	136 5.92
		Mogna- sium (Mg)										5.8				21 1.70
		Colcium (Co.)		2.80 %	1.56 °	1.30 %		1.50 °	1.36	1.64 °	1.64 °	0.60	1.01	2,24	3.08	21 1.05
-		E allo		7.6	7.2	7.3		7.1	7.2	7.3	7.3	7:3	7.5	7.7	7.4	7.7
	Soecific	(micromhos of 25°C)		971	304	225		592	240	288	280	177	164	767	1170	196
		gen %Sot		78	74	82		81	83	98	94	B9	87	93	96	98
		Oies oxy		7.0	7.2	8.9		9.5	9.1	0.6	4.6	8.5	4.9	8.2	80.20	7.6
		Temp in OF		69	62	53		1.4	53	95	8	179	8	Z.	73	Ę
		Oischorge Temp	TIDAL													
		ond time sompled P.S.T.	1962	10/3	11/13	12/10	1963	1/8	2/6	3/14	14/10	5/14	6/5	7/10	8/6 1300	0950

b Lobaratory pH.

c Sum of colcium and magnesium in epm.

Jum of Colcium and magnesium in typin. If the copper (Gu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chramium (Gr⁺⁵), reparted here as $\frac{0.0}{0.00}$ except as shown iron (Fe), aluminum (Al), respected here as $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Grovimetric determination.

³²⁵⁰⁵⁻D-H 6-61 200 SPO h Annot median and range, respectively. Colculated from analyses of duplicate monthly samples, made by Colifornia Department of Public Health, Division of Labornaries, or United States Dealing Words States Geological Survey, Quelity of Warre Branch (USCS), United States Geological Survey, Quelity of Warre Branch (USCS), United States Geological Survey, Control States Geological Survey, Chelity of Will); Los Angeles, Department of Water and Power (LADWP); City of Los Angeles, Department of Water Department of Water Resources (DWR); as indicated.

Public Health (LBDPH); Termol Testing Laboratories, Inc. (TLL); or California Department of Mater Resources (DWR); as indicated.

CENTRAL VALLEY REGION (NO. 5)

SAN JOAQUIN RIVER AT BRANDT BRIDGE (STA. 1018)

1			Anolyzed by i		USBR				
Comparison Com		5	Hd - Californ 11y ppm MPN/ml						
Comparison Com		<u> </u>	Mordness ee CoCO _S Tatol N C						
Discourge Tarm Disc		Per	000 - 100 -		777		4.5	%	9 7
Discourge Tarm Disc	89	Total	e olved e olide e olide		94.19		264	84	88
## Distribution Says (file) Cate In Str. Cate I			Other constituents						
## Description Constituting in Circle in Circl	uo	nillion	Baron Sifico						
## Discourse Targ	ner milli	per n							
## Description Constituting in Circle in Circl	porte p	valents							
## Disconcre tem		1069			124		27	21	627
The Description of Tang Description of Column Magner Sedum Period of Column Period									
T. 12			Bicor- bonate (HCO ₃)						
T. 12	lo se	100	Corbon- ote (CO ₃)						
T. 126 (C.c.) 125 (C.c	N N	1	Stum (K)						
T. 126 (C.c.) 125 (C.c			Sodium (No)		73		24	8.1	된
T. 6 2.2 2.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2			Magne- eium (Mg)						
To be a consider the constant of the constant			Calcium (Ca)						
Description 1		Specific	or 25°C)		716		404	125	753
8 T)									
8 T)			Temp in OF		62		39	39	92
8 T)			Dischorge in cfs						
				1962	11/14	1963	1425	5/13	1100

b Leboratory pH

c Sum of calcium and magnesium in opm.

Sum of colcium and magnessum in opm.

Lon (Fe), and heavalent chromium (A1), ersonic (Lu), lead (Fb), manganese (Mn), zinc (Zh), and heavalent chromium (C1⁻¹⁵), reparted hare as 0.0 except as shown. Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

g Gravimetric determination.

SESSEMENT OF STO AND Mareal analyses made by United States Geological Survey, Doulty of Water Branch (USGS), United States Department of the Interior, Survey and Power (USBR); United States Poblic Health Servey, Doulty of Water County Flood County Flood County Closs Angeles, Department of Public Health (LBDPH); City of Los Angeles, Department of Water County Flood Power (LADPP); City of Los Angeles, Department of Water County Flood Power (LADPP); City of Los Angeles, Department of Water Resources (DWR); or indicated hango median and range, respectively. Coloculated from analyses of deplicate monthly samples made by California Department of Poblic Health, Division of Leborationes, or United States Public Health Service

Proceedings of the Control of the Co

CENTRAL VALLEY REGION (NO. 5)

			Anolyzed by 1		USCS													
			os CoCO ₃ ity MPN/mi		Median 620.	Maximum >7000.	Minimum 23.											
		-Jnj	- ty - ty - ty - ty - ty - ty - ty - ty		4	9	-3		15	55	35	90	20	20	25	07	30	
			N COS		20	77	34		39	20	63	13	en	-	94	ž	8	
		3	Totol Totol		179	160	110		122	82	177	70	42	20	136	132	186	
		Per	P E		55	53	52		575	94	55	42	31	36	84	52	51	
		Total	solved solids in ppm		456 e	410 €	286 e		323 e	8	a 194	150 e	85 1	95 e	356 e	348	1 434 E	
			Other constituents										PO _{l,} 0.20				AS 0.01 ABS 0.1 PO ₄ 1.3	
			Silico (SiO ₂)										16				19	
		to.	Boron (B)		0.1	0.1	0.5		0.2	0.1	7.0	0.0	0.0	0.0	0.2	0.3	0.2	
101)	per million	per milition	Fluo- ride (F)										0.0				0.1	
(STA.		equivolents	1rote (NO ₃)						_				0.9				0.07	
BRIDGE	٥	2000	Chlo- ride (CI)		3.70	3.33	2.23		2.57	17	3.53	30	12 0.34	15	2.68	2.91	3.67	
ARWOOD	C.		Sul - fote (SO ₄)										7.4				31 0.65	
VER AT	constituents		Bicor- bonote (HCO ₃)		3.18	141 2.31	93		101	070	139 2.28	69	62.0	96.0	134	132	.180 2.95	
SAN JOAQUIN RIVER AT GARWOOD BRIDGE (STA. 101)	Minaral		Corbon-		000	00.0	0.00		00.0	00.0	0,0	0.00	0.0	0.00	0.00	0.00	0000	
SAN JOA	N		Potos- Sium (X)										1.6				5.2	
			Sodium (No)		4.31	3.65	2.39		65 2.83	15	101	24	9.3	13	65 2.83	66 2.87	3.96	
			Mogne- Sium (Mg)										4.0				17	
			Colcium (Co)		3.8	3.20	2.20		2.440	0.76	3.540	1.41	10	1.00°	3.11°	2.640	2.35	
			I elo		7.9	7.5	7.3		7.3	7.1	3.5	7.3	7.1	7.1	8.0	8.1	8.3	
		Specific	(micromhos at 25°C)		900	725	505		571	159	825	592	132	167	629	615	809	
		,	gen %Sat		76	88	92		80	83	89	89	85	91	120	83	124	
			oxygen ppm %Sat		8.2	8.7	8.2		9.3	8.8	0.6	6.9	9.6	8.3	10.3	6.8	10.4	
			E C		72	61	75		89	55	59	99	59	8	7	92	92	
			n cfs in of	Tidal														
		9100	sompled P S.T	1962	10/2	11/14	12/5	1963	1/8	2/4 1320	3/12	4/9 1515	5/13	6/4	7/9	8/7	9/11	

b Laboratory pH

c. Sum of clackum and magnesium in epim.
d. Iron (Fe), oluminum (A1), areactic (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Gr⁻⁶), reparted here as $\frac{0.0}{0.00}$ except as shown. c Sum of calcium and magnesium in epm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

g Grovimetric determination.

h Annual median and range, respectively. Calculated from analyses of dublicate monthly samples made by California Department of Public Health, Division of Laboratories, at United States Debilic Health Service.

Mineral analyses are as by United States Caelogical Survey, Duality of Water Branch (USS), United States Caelogical Survey, Duality of Water Branch (USPHS), San Bernardina Cannub, Memorylane West and Power (LADMP), Carvo District of States Caelogical Southern California (WMD), Last Angeles, Department of Water Caelogical States (MMD), Last Angeles, Department of Mage Caelogical States (MMD), Last Angeles, Department of Water Caelogical States (MMD), Caelog

CENTRAL VALLEY REGION (NO. 5)

(ARC AME) WATCH VERSON ON THE SERVICE WAS

Column C	_											
Comparison Table Comparison Table Comparison		Anolyzed by §			USBR							
Comparison Table Comparison Table Comparison		Soluformh MPN/mi										
Comparison Table Comparison Table Comparison		Pid-	u da									
Comparison Table Comparison Table Comparison		dnes	PPC									
Control Cont		, s	Toto									
Control Cont	-	0 0	5									
The control of the	L	2000	ol o		156		200	124	132	148	324	236
1			Other constituents									
1		o cities	SiO ₂)									
Continue		1 9	(8)									
Control Cont	million	Figo-	(F)		-							
Control Cont	ris per	N - N										
Outcome Temp Outcome Sepecific Outcome Outco	9	Chlo-										
Osechorge Tamp Osechorge Tamp Osechorge Tamp Osechorge	9	Suf -	101e (SO ₄)									
Osechorge Tamp Osechorge Tamp Osechorge Tamp Osechorge	1	Bicor	bonote (HCO ₃)									
Osechorge Tamp Osechorge Tamp Osechorge Tamp Osechorge	love to a	Carbon										
0.1 C15 In C15 I	2	Potoe-	E(X)									
0.1 C15 In C15 I		Sodiin	(0 N)									
0.1 C15 In C15 I		Mogna-	(Mg)									
0.1 C15 In C15 I		9	(Ca)									
0.000000000000000000000000000000000000		Ĩ										<u> </u>
0.000000000000000000000000000000000000		Specific	at 25°C,		203		300	163	151	202	294	8.
0.45.00.40.40.40.40.40.40.40.40.40.40.40.40.		9 0	%Sat									
a.b.												
a.b.		Tang Pari			61			19	69	71	71	72
a.b.		Orechorge in cfe										
				1962	10/17	1963	4/8	5/13	6/11	7/9	8/12	5221

b Laboratary pH. a Field pH

ANALYSES OF SUMFACE WATCH
DESPRESS OF SUMFACE WATCH

Sum of colcium and magnessum in 6pm.

Lon (En), and hexavolent chromium (Cr^{1,3}), reported here as 0.0 except as shown.

Iron (Fe), aluminum (AI), arsence (As), copper (Cu), lead (Pb), manganasa (Uh), sinc (Zh), and hexavolent chromium (Cr^{1,3}), reported here as 0.00 c Sum of colcium and magnessum in apm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed canstituents Gravimetric determination.

Mineral analyses made by United States, Geological Survey, Ouality of Water Branch (USGS); United States Department of the Interior, Surveau of Reclamation (USBR); United States Department of Water and Power (LADMP); City of Las Angeles, Department of Public Health (LADPH); City of Las Angeles, Department of Public Health (LADPH); City of Las Angeles, Department of Public Health (LADPH); City of Lang Beach, Department of Mater Resources (DWR); as indicated. Annual median and range, respectively. Coloulated from analyzes of duplicate monthly samples made by Calidrania Department of Public Health, Division of Lebaratories, or United States Public Health Service.

ANALYSES OF SURFACE WATER

trited Streets Public Health So vices
are Bright Health Service (USPHS), San Bernardine County Flood
of Public Health & ADPH), City of Long Reach, Department of

CENTRAL VALLEY REGION (NO. 5)

		bid - Coliformh Anolyzed			SDSN													
		Coliform ^h MPN/ml			Median 620.	Maximum)7000.	Minimum 6.2											
		- Pid			6	00	2		7	75	9	35	3	15	25	150	8	
		Hordness os CoCO ₃	Totol N.C. ppm ppm		77	51	₹.		L+1	9	8	15	0	5	39	83	64	
	_				730	159	100		139	39	192	19	36	36	144	224	189	
		Sod -			e 25	e 55	e 21		53	6 45	e 29	94	33	9	e 20	17	f 51	
	F	solved solids	F a a r i		433	804	261		3996	91	526	151	75	42	362	539 e	82,88	
		Other constituents											PO ₄ 0.20				AS 0.01 ABS 0.0 PO4 0.45	
		Silico	(5:02)										91				52	
	0	Boron			0.1	0.1	0.1		7.0	0.1	77.0	0.0	0.1	0.0	0.2	0.3	0.1	
105)	r million	Fluo-	(F)										0.2				0.01	
SAN JOAQUIN RIVER AT MOSSDALE BRIDGE (STA. 102)	parts per		(NO ₃)										0.02				0.05	
BRIDG		Chlo-	(0)		3.44	3.44	73		3.27	17 0.48	144	33	8.5	15	102 2.88	172	3.84	
OSSDALE	Li s	Sul -											6.0				1.02	
VER AT !	constituents		(HCO3)		<u>166</u> 2.72	2.16	81 1.33		1.84	070 070	137	1.05	45	38	2.10	160	.171 2.80	
AQUIN RI	Mineral co	Corbon	(00)		00.0	0.00	00.0		00.0	00:00	0.0	0.0	00.0	0000	000	0.20	0.0	
SAN JO	Ň	Potos-	(X)										1.5				4.2	
		Sodium	(0 N)		89 3.87	3.87	2.09		3.13	15	111	26 1.13	8.4	11 0.48	66 2.87	105	4.09	
		Mogne-	(Mg)										4.1				1.48	
		Colcum Mogne-	(Co)		3.60 %	3.19	2.00		2.78	0.78	3.84	1.34	7.6	0.72	2.88	4.47	2.30	
		T (o.1 to		7.5	7.8	7.3		7.3	7.1	7.3	7.3	7.1	7.1	7.9	4.8	9.0	
		Specific conductonce (micromhos	3		492	720	794		949	191	929	267	114	132	639	953	819	
		9 6	%Sot		96	83	80		83	87	85	8	88	93	211	157	105	
		Dissolved	Edd		6.8	8.3	8.8		9.8	4.6	8.9	9.1	8.9	8.8	9.8	12.9	9.1	
		Temp n oF	L		19	09	52		24	75	95	26	59	99	72	æ	73	
		Discharge Temp		Tidal														
		ond the	P S T	1962	10/8	11/14	12/10	1963	1/7	2/4	3/12 0915	4/9	5/13	6/4 1150	7/9	8/7	9/10	

Loborotory pH.

Sum of cocicum and magnessum in epm.

Sum of cocicum and magnessum in epm.

Iron (Fe), and hexavolent chromium (Cr*6), reported here as \$\frac{0.0}{0.00}\$ except as shown. Sum of colcium and magnesium in epm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

h Amual median and range, respectively. Calculated from analyses of duplicate monthly samples, made by California Department of Public Health, Division of Laboratories, or United States Debit Health Service. Octavity of Worse Branch (USS), United Jourses, Calculated States Geological Survey, Cachtury of Worse Branch (USS), United States Geological Survey, Cachtury of Worse Branch States Geological Survey, Cachtury of States Geological Survey, Cachtury of Las Angeles, Department of Worse States Geological Survey, Cachtura (USPHS), San Benard Management of Worse and Power (LADWP), City of Los Angeles, Department of Worse and Power (LADWP), City of Los Angeles, Department of Public Health (LADPH), City of Long Beach, Department of Public Health (LADPH), City of Long Beach, Department of Worse and Cachtura of Worse States (Company), City of Long Beach, Department of Worse States (Company), City of Long Beach, Department of Worse States (Company), City of Long Beach, Department of Worse States (Company), Company (Company), Compa

ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (NO. 5)

SAN JOAQUIN RIVER AT SAN ANDREAS LANDING (STA. 112b)

Г	-	7	1				_									
		Anolyzed by i		USBR												
		bid - Coliform ity MPN/mi														
	Tur.	- Pid -										-				
		Hordness os CoCO ₃														
-		To To		8	£	34		<u>چ</u>	8	53	81	21	88	27	33	33
50	0	solved sod - solids sod - in pom	-	~												
-	<u>ئ</u>	P O S S	├	48	144	गैटा		214	156	160	911	8	128	727	136	1%
		Other constituents														
		Silico (SiO ₂)														
	ion	Boron (B)														
million	lim uil	Fluo- rids (F)	-													
ports per million	equivolents per million	Ni- trote (NO ₃)		3.1	9.6	0.0		1.2	1.9	0.0	0.0	9.0	9.0	3.7	0.0	9.0
od	equivo	Chio- ride (CI)		5.7	17	βl		35	13	17	£.3	7.1	킈	킈	138	17
	u .	Sul - fore (SO ₄)		9.6	13	17		77	23	19	14	14	13	91	15	প্র
	stituents	Bicar- bonats (HCO ₃)		29	70	8		위	45	77	91	43	63	98	7	88
	Minarol constituents	Carbon- ata (CO ₃)		0.0	0.0	0:0		0.0	0.0	0.0	0.0	0.0	0:0	0:0	0:0	0.0
	Min	Potas- sium (K)		1.2	1.2	1.2		1.2	1.6	1.6	1.6	1.2	1.2	1.6	2,3	1.6
		Sodium (No)		9.4	15	14		23	174	15	5.3	5.1	10	9.9	15	17
		Magna- sium (Mg)		8.8	10	6.5		8,8	7.4	6.6	5.0	3.9	9.9	7.9	8.2	10
		(Ca)		01	13	133		8	ল	16	1	9	শ্ৰ	2	13	ল
		° H		7.1	7.7	7.5		7.7	7.5	8.1	7.8	7.6	8.0	8.0	7.7	7.5
	Spacific	Conductonce PH (micromhos PH (conductonce)		89	196	1,82		589	¹ 40 ¹	5256	120	104	163	168	506	242
-		gan (n														
		Disso														
		Tenp in oF		3	8	87		74	75	53	99	92	20	70	1/2	72
		Dischorge Tamp														
		Dote ond time sompled P S.T	1962	10/15	11/13	12/26	1963	1/14	2/11	3/11	1030	5/13	6/10	7/8	8/12	9/10

Laboratary pH.

Sum of colcium and magnesium in epm.

Sum of cocicum and magnessum in epm.

Iron (Fe), aluminum (Al), area (As), copper (Cu), lead (Pb), manganese (Hn), zinc (Zn), and hexavolent chromium (Cr*6), reparted here as 0.0 except as shown. Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Grovimetric determination.

Annual median and range respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division at Laboratories, or United States Public Health Service (USPHS), San Bernardina Caunty Flood Cantel District State California (USPHS), San Bernardina Caunty Flood Cantel District of States Public Health Service (USPHS), San Bernardina Caunty Flood Cantel District of Subtract o

SZSOS-E-H G-61 ZVO SPO

ANALYSES OF SURFACE WATER
CENTUAL VALLEY REGION (NO.5)

Control District No. (1921). Assembly Universal States of States Colleges (1920). Les Angeles Districted Manages (1920). Les Angeles Di

CENTRAL VALLEY REGION (NO.5)

		Anolyzed by i		nscs													
		os CaCO ₃ 11y MPN/ml os CaCO ₃ 11y MPN/ml Tatal N.C.		Median 230.	Maximum \$7000.	Minimum 13.											
	1	n ppm		6	9	9		_	9	8	8	30	8	200	20	35	
		Hordness os CaCO ₃ Tatal N.C.		56	35	74		75	72	35	22	00	_	32	15	22	
		ľ		170	154	158		131	78	108	4	99	0,1	96	89	122	
		sod -		55	75	55		51	4.5	53	C 1,7	42	9-	777	2,7	94	
	Total	solved solids		425 e	385 e	405		329	176 °	277 e	181 е	151	90	199	182	253	
		Other canstituents										PO4 0.25				AS 0.01 ABS 0.1 PO ₁ 0.25	
		Sinca (SiO ₂)										취				9.9	
- 1	lion	Baron (B)		0.5	0.0	0.2		0.1	0.1	0.2	0.1	0.1	0.0	0.2	7.0	0.1	
100)	per million	Fluo- ride (F)										0.1				0.00	
n (STA.	equivalents per million	trote (NO ₃)										1.4				0.03	
JE ISLA!	e doin	Chlo- ride (C2)		3.64	3.27	121		2.76	43	72 2.03	1.13	28	16 0.45	53	1.24	2.17	
N RIND	Ē	Sul - fote (\$04)										23				13	
TANNEL O	constituents	Bicar- bonate (HCO ₃)		176 2.88	2.38	135		1.54	1.08	89	71	73	0,66	1.28	90	2.00	
STOCKTON SHIP CHANNEL ON RINDGE ISLAND (STA. 100)	Mineral cor	Carbon- ote (CO ₃)		0.00	0.00	0.00		0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.0	00.00	
TOCKTON	Ā	Potas- sium (K)										2.0				3.6	
S		Sodium (Na)		4.09	83	3.87		5.78	30	57	32	24 1.04	0.52	34	30	2.13	
		Magne- sium (Mg)										6.8				1.00	
		(Calcium (Ca)		3.400	3.09	3.15c		2.620	1.56°	2.17c	1.57c	16	0.79°	1.92°	1.780	29	
		E alo	_	7.5	7.5	7.5		7.1	7.2	7.5	7.1	7:3	7.5	8.0	7.3	7.5	
		Dissoived conditioned oxygen (micromhos) ppm 9/8at at 25°C)		492	692	723		591	316	661	326	255	143	358	327	504	
		gen %Sot		62	98	8		73	22	8	83	93	8	76	ま	19	
		Oissoi oxyg ppm		7.1	4. 80	9.6		8.7	7.3	8.0	8	7.8	9.1	8.2	7.7	5.6	
		Temp in off		69	62	55		911	95	99	99	69	99	75	82	92	
		Discharge Temp	Tidal														
		Date and time sampled PST	1962	10/8	11/14	12/4	1963	1/7	2/5	3/11	1330	5/6	6/4	7/8	8/5	9/11 0950	

Labarotory pH

c. Sum at solicium and magnesium in epim. d lead (Pb.), manganese (Un), 2 nnc (Zn), and hexavalent chromium (Gr*5), reported here as 0.00 except as shown. d Iran (Fe), aluminum (A1), areainize (As), capper (Cu), lead (Pb.), manganese (Un), 2 nnc (Zn), and hexavalent chromium (Gr*5), reported here as 0.00 c Sum of calcium and magnesium in epm.

e Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

g Gravimetric determination.

h Amual median and range, respectively. Colculated from analyses and duplicate monthly samples made by California Department of Public Health, Division of Labardanies, or United States Public Health Service.

In June 2015 March 2015 March 2015 Journal States Colculated States Carlogical Survay, Ductory at World States Carlogical Survay Ductory at Amazel States Carlogical Survay Colculated States Carlogical States Carlogica

CENTRAL VALLEY REGION (NO. 5)

		Anolyzad by i	2001	2			_										
		bid - Coliformh Analyzad															
	Ĭ	bid - tty mpgm		35	07	35			09	85	615	20	200	45	'n	55	
		000 N	E dd	14	25	25		16	9	00	-	0	CU	٥	0	_	
			Edd	135	124	141		164	108	128	8	111	110	117	131	143	
	å	P P P		21	22	%		19	23	19	17	18	18	1.1	Ş	16	
	Tatai	solved solids in ppm										156 ^f 156 ^g				182 ^f 185 ^g	
		Other constituents				Tot. alk. 141		Tot. alk. 180		Tot. alk. 146		Tet. alk. 135 Pou 0.05	Tot. alk. 132	T.t. alk. 147		PO _{1, 1,11,2} As 1,,00 ABS 0,00	
		(Silico										켐				21	
	lion	Boron (B)		0.2	0.0	0.1		0.1	7	0:1	0.0	0.0	0.1	3	01	27	
par million	er mi	Fluo- ride (F)										0.2				0.01	
ports per	squivalents per million	Ni- trats (NO.)	\rightarrow									0.05				0.05	
STORE CLOSEN AT BLACK BOLLD DAYS SILE (SLAT. 130)	squive	Chio-		25.0	28	1.21		26 0.73	16	18	8.6	0.28	0.31	0.31	0.31	14	
THE THE	ē	Sul - fats (SO ₂)										13				0.10	
TOTAL POLICE	constituents	Bicor- bonote (HCO ₂)		2.41	121	137		2.82	2.05	2.28	116	2.11	2.10	2.34	161	2.5	
10	Mineral con	Corbon-		00.0	0.00	20.07		0.13	00.0	0.10	0.00	9.10	0.07	70.07	0.00	0.0	
100	Min	Potas-					_					0.03				1.1	
		Sodium (No)		0.70	07:0	1.00		18	0.57	14	0.40	11 0.748	0.48	11 81:0	11 8,1,6	13	
		Magns-	\top									0.82				1.6	
		Caleium (Ca)		2.70	18	2.81		3.28	2.16	35.5	1.36	1.40	30.2.1	10.1	2.6.	1.40	
		F 4/8		2.5	7.7	8.3		8.3	7.100	œ 10	80	100	ai lai	100	E 100	0011	
	Spacific	(micromhos pH at 25°C)		329	317	387		389	398	306	227	557	250	270	273	322	
-		gen (r		100	Ŷ.	104		104	901	109	1.7		Ę	3	557	707	
		osygen ppm %Sot		10.0	10.7	11.4		13.7	11.4	11.6	12.2	10.1	6.4	30 30	ω,	3.0	
				09	51	3		23	75	55	64	8	69	70	32	73	
		Dischorgs Temp in cfs in of		2	9	7,00		رَد	1,146	35	6, 10	386	188	150	154	154	
		sompled P.S.T.	1:462	10/18	11/28	12/13	1.62	1/16	.//:	- 31	14/17	1,40	6/6	23.3	8/77 8550	J/11 F830	

b Laboratory pH.

c Sum of calcium and magnesium in apm.

of Iron (Fe), aluminum (A1), arsanic (As), capper (Cu), load (Pb), manginese (Mn), zinc (Zn), and heravalent chramium (Ci**), reported hara as 00 except as shawn.

Derived from conductivity vs TDS curvas

Determined by addition of analyzed constituents

Gravimetric determination.

OPE OCE 10-0 H-0-SOZZE Annual median and range, respectively Calculated from analyses of deplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Department of the Internet, Sursea of Reclamation (USBR), United States Department of the Internet, Sursea of Reclamation (USBR), United States Department of the Internet States Department of Many Flood Cantol District (SBGFD), Internet District of Southern California (AMD), Las Angales a Department of Mater and Power (LADMP), City of Lang Beach, Department of Mater States (SBGP), Sea indicated, Samples, Department of Mater Resources (DMP), sea indicated, Sea indicated.

106

ANALYSES OF SUPERIOR WATER

CENTRAL VALLEY REGION (NO. 5)

Charles Char	
Specific	
Sample S	
Sample S	
System S	
Specific conditions	
State 1	
Specifical Constituents Mineral Constitue	
Contacting Specific Contacting Colours Colours	
Specific Part Par	
Consister of Separation Consister of Sep	
Constitution Cons	
Constitution Cons	
Constitute Con	
Constitute	
Constitute Con	
Constitute Con	
Specific Consolved Conference Confer	
Consented Specific Consented Conse	
Consented Specific Consented Conse	
Overline Specific Overline	
001.501.001.001.001.001.001.001.001.001.	
001.501.001.001.001.001.001.001.001.001.	
1 1 1 1 1 1 1 1 1 1	
11 11 11 11 11 11 11 11 11 11 11 11 11	
DRX 339 DRX f	
	DRY
Dots Dots Toda 5/2 2/2 2/2	

b Lobarotory pH.

Jum of colcummond magnessum in epim. I the second of the s Sum of calcium and magnesium in epm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service.

i Mineral analyses mode by United States Geological Survey, Duality of Water Branch (USGS); United States Department of the Interior, Survea and Power (LADMP); City of Las Angeles, Department of Robert Clayment of Public Health (LADPH); City of Las Angeles, Department of Public Health (LADPH); City of Las Angeles Department of Public Health (LADPH); City of Las Angeles, Department of Public Health (LADPH); City of Lang Beach, Department of Public Health (LADPH); City of Lang Beach, Department of Wells assources (DWR); as indicated.

32505-0-H 6-61 200 SPO

CENTRAL VALLEY REGION (No. ')

PHOMPS CHEEK MEAR MORPH (STA.

		D m	4				_											7
		Hardnass bid-Colitarmh Analyzed as CoCO ₃ liy MPN/mi by i Dy i Tatoi N.C. Dpm COMP Dpm	5															
		MPN/mi																
	1	- Pid - Pid - Pid - It				8		-	3 3		1 1/6	=	-3	-	~1			
		000 s			-			-7	· ·	`	ŭ	٠.	2,	2	~~			
		ds Co			1100	30		301	~	1.	87	7	011	2.7	143			
	0	L pog			5	-		ŝ	-	œ	-	-	=	æ				
	Total	solios solios mod vi										874						
		Other constituents								Tot. alk. 132		PO ₁₁	P. t. alk. 120	F.t. alk. 150	T'4. alk. 171			
		(\$0.5) (\$0.5)										2					 	
	lion	Baron (B)			010	2		01	3	0,0	7	ी	1.1	7	2.5			
in in	er mil	Fluo- ride (F)										0.01						
corts our million	aquivolants per million	rrats (NO _S)										0.0			-			
100	041008	Chio- rids (CI)			2.66 1.100	0.11		-18	1.6	1.13	3.00	3.03		11.13	7.			
Mark House	c.	Sul - fots (SO ₆)										10						
THOUSE CHOSEN HEAVY COURS OF THE	stifuenti	Bicor- bonate (HCO ₃)			2.20	岩		1.97	1.36	F1:	1001	84 1.38	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	011	15:			
AHOME	Minarol constituents	Carbon- ofs (CO ₃)			00*0	00.0		00.1	00*0	07.	41.00	00.0	01.0	0.17	0.23			
	Min	Sadum Potas- (Na) (K)										500						
		Sadium (Na)			0.1	1.0		1	4	4.5	1,17	3.5	0.21	1.24	0.27			
		Mogna Sium (Mg)										0.37						
		Colcium (Co)			i i	1.0		20.5	Joy 1	2.60	1.7	1267	2.23	15.	1.80			
-		I ===			11:	1:		4	45	43	1	1	1:	1	1			
	Spacific	Conductance (micromhos pH at 25°C)			; 14	178		17	155	76,	189	155	228	4136	Uni			
Ì		gan (% Sot			ž	5		Ē	101	E	2;	101	*	=	-			
		OK y OK y			~.	1.1		11.	3.7	10.7	10.5	10.0	2	•	9.7			
		Tamp in of			-	Ţ.		33	3,0	33	3	3	7.	7	2			
		Dischorgs Temp		DIK	0.	1.5			1,500	150	600	900	100		70	DHCK		
		Sampled on ST S d	2	100		- 150	- X	1/410	/11	1/2	1/5	5/3	f/6 114 No	7/11	8/9 0011	,115		

b Laboratory pH

> Sum of calcum and magnetism in thim 1 and PD, manganese (Un), and heaverlent chromium (Ci⁻¹), reported here as $\frac{0.0}{0.00}$ except as shown. I from (Fe), aluminum (AI), arismic (AS), copper (Cu), load (PD), manganese (Un), and heavest c Sum of calcium and magnesium in thm

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents

Grovimetric determination

h Annual median and range. respectively. Colculated from analyses of duplicatio monthly samples made by California Department of Public Health, Division of Loboratories, or United Stores Public Health Service.

Manel analyses made by United States Geological Survey, Outliny of Water Branch (USGS); United States Department of the Interest, Bursey of Reclamation (USBR); United States Public Health Service (USPR), Son Beneatine County Flood Cantel District (SBCFCD), Marrapoliton Water District of Southern Colletons (WWD), Los Angeles Department of Web Conset (LADWP); City of Los Angeles, Department of Web County Flood Public Health (LADPH); City of Laborations, Inc. (TLL), or Caldonia Department of Web Conset (DWR), as indicated.

ANALYBES OF SUHTACE WATER

ANALYSES OF SURFACE WATER

CENTRAL VALLEY REGION (No.

THOMES CREEK NEAR PASKENTA (STA. 13d)

			hty MPN/ml by i	USGS		-											
			MPN/mi														
		Tur	- A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		CI	30	770		-	70	15	23-	20	CJ.	9	-	-
			S O S		CI	m	7		9	7	4	m	50	7	77	28	04
		1	Totol ppm		62	53	62		66	93	111	69	70	96	145	152	156
		Per	- pos		177	12	17		13	9	2	D.	10	9	~	4	17
		Totol	salved sod - solids um in ppm										96f 958				211 [£] 216 ⁸
			Other constituents								Tot. alk. 122		PO4 0.05	Tet. alk. luf	T.t. alk, 160	Tot. alk. 151	Pot. alk. 142 Po ₁ 6.00 As 0.05 ABS 0.00
			(SiO ₂)										2				01
		ion	Boron (B)		1.0	0.0	0.0		0.0	0.0	0.0	0	2	3	0,0	0.0	0.1
	million	per mil	Fluo- ride (F)										100.				0.01
DR. LSc	ports per million	equivolente per million	rote (NO ₃)										100				0.01
ENTA (2	ă	equivo	Chlo- ride (CI)		4.2	3.8	0.00		0.18	8.00	5.0	0.03	3.4	0.11	7.3	1.30	3 B
AR PASK	9		Sul - fors (SO ₄)										0.21				5.61
INCRES CREEK NEAR PASKENIA (SIA. 134)		1001118	Bicor- banate (HCO ₃)		73	1.00	1.21		1114	1.52	1.72	1.33	1.29	1.66	2.46	2.28	2.20
THOMES	Manage Committee of the	10.10	Corbon- ote (CO ₃)) G	0.00	00.00		0.00	05.50	0.10	00.0	00.0	07.70	5.17	0.20	0.13
	MA		Potos- (K)										0.0	_			0.03
			Sodium (No)		0.20	2.5	3.6		6.6	0.17	5.2	75	1.15	0.20	35.0	11	13
			Mogne- sum (Mg)										3.6				1.17
			Calcium (Co)		1.24	1.05	1.24		1.98c	1.70	¥2.5	1.38	1:17	1.91	2.90	3.04	1.95
			P %		27.5	37:	:T:		35	719	寸	Ti:	31g	215	200	88.7	77.00
		Specific	(micramhos pH at 25°C)		140	1119	130		222	178	689	52	100	174	3.7	333	365
		_	% Sot		66	89	96		100	66	35	102	7	8	707	115	155
			Disso		10.9	11.3	11.7		13.8	11.6	11.0	7:.7		7.	7.7	9.2	1.8
			To a		22	4.5	4		\$	9	617	-	T 9	99	89	79	75
			Dischorge Temp		Ž	37.1	133		m m	3	٦	1,1)	- 27	90	94	d	0
			ond time sompled P.S.T.	1962	Ţ-#	75	16 2 * 120%	* 1	Lil.	1 2 2	3 701	11.	1.15	6,6	7.5	11	1120

b Labaratory pH.

Sum of colcium and magnessum in spin.

Iron (Fe), aluminum (Al), arsenized (As), capper (Cu), lead (Pb), mangonese (Mn), zinc (Zn), and hexavalent chromium (Gr⁺⁶), reparted here as 0.00000 except as shown. c Sum of calcium and magnesium in epm.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

h Annual median and unage respectively. Calculated from analyses of duplicate monthly samples, made by California Opparment of Public Health, Division of Laboratories, or United States Caclogical Survey, Calculated Wash (1967), United States Geological Survey, Cacloty of Managed (1967), Cantal Division (1967), United States Geological Survey, Cacloty Cacloty (1967), Cacloty of Los Anageles, Department of Wash, Cacloty (1967),
32505-D-H 6-61 200 SPC

CENTRAL VALLEY REGION (NO.5)

	_	_																
			Anolyzsd by i		3530													
		=	os CoCOs 11y MPN/mi		Median 2.3	Max1mum 2400.	Minimum 0.23											
		- in L	- pid - th th th th th th th th th th th th th t		2	04	2		35	9	90	50	8	25	15	co.		
			S COS		0	~	7		CI	0	0	0	0	-	m	0		
		:	Totol N C		57	33	35		35	21	36	37	23	53	177	55		
		Per	Pos - pos		ដ	13	16		21	92	6	15	16	15	7.1	2		
		Total	solived sod -		9 68	51 °	57 °		55 c	35 "	57 e	55 e	138 F	35 е	e 69	80 f 82 g		
			Other constituents										AS 0.00 ABS 0.0 POL 0.05			AS 0.01 ABS 0.0 POL 0.10		
		-	Slice (Siog)	-							-		ল			16		
		100	Boron (8)		0.0	0.0	0.0		0.1	0.0	0.1	0.1	0.0	0.0	0:0	0.0		
	million	per million	Fluo-										0.0			0.1	-	
21)	parts per		trots (NO ₃)										0.0			5.6		
E (STA.	00	equivolents	Chlo- rids (Cl)		0.03	0.05	2.2		0.03	2.0	0.04	0.03	0.9	0.2	5.8	0.03		
RYSVILL		E	Sul - fors (SO ₄)										0.0			2.8		
R AT MA	9.9.	STITUBLIT	Bicor- bonote (HCO ₃)		67	36	41		0.66	26	44 0.72	141	23	27	46	65		
YUBA RIVER AT MARYSVILLE (STA. 21)	Administration of the second	ingi con	Corbon- ors (CO _S)		0.0	00.0	0.0		0.0	0.00	0.0	00.0	0.0	0.0	0.0	0.00		
Y	44.00	LI W	Potos- (X)										0.0			0.03		
			Sodium (No)		3.7	2.3	3.0		2.4	0.09	0.07	2.7	2.0	0.08	2.9	3.2		
			Mogne- sium (Mg)										0.11			3.5		
		-	Colcium (Co)		1.14	0.65	0.70		0.70	0.4%	0.72	0.08	7.0	0.1460	0.820	15		
		_			7:3	7.3	7.3		7.7	7.2	7.3	7:7	7.3	7.9	7.8	7.6		
		Specific	(micrombos pH of 25°C)		123	7.	85		62	51	82	42	55	51	£	129		
			gen (7		103	8	105		8%	103	106	8	107	103	3	%		
			Dissolved osygen ppm %So		0.6	10.0	11.6		12.0	11.7	11.7	11.4	11.4	10.2	6.9	8.7		
			0 0 U		22	93	25		77	9,	25	54	55	19	1.9	69		
			Osschorge Temp		197	787	17400		1300	11700	1660	0594	9530	0524	434	238		
			sompled sompled P.S.T.	1962	10/1	11/1	12/3	1963	1/2	2/5	3/5	1,72	5/9	6/3	07/60	9/13		

o Field pH

except as shawn.

110

ANALYZE B OF SELISTACE WATER CHAPTER VIOLET (NO. 2)

b Laboratory pH

[.] Sum of colcium and magnesium in apm.

Sum of colcum and magnesium in apm.

Iron (Fa), aluminum (Al), assence (As), capper (Cu), lead (Pb), manginesia (Mn), zinc (Zn), and hexavalent chromium (Ci *6), reparted here as 0.00
0.00 Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimatric determination.

³⁵ 32505-L-H 6-62 200 Anniel median and range, respectively Calculated from analyses of duplicate monthly samples made by Calculation Department of Public Health, Division of Laboratories, or United States Public Health Service (USPHS), i. Ser Bemandine County Flood Control States (Service) County (USBR), United States Public Health Service (USPHS), i. Ser Bemandine County Flood Control States (Service) County (USBR), United States (USPHS), i. Ser Bemandine Control States (USPHS), i. Ser Bemandine Control States (USPHS), i. Service of States (USPHS), i. Service (USPHPS), i. Service (USPHS), i. Service

CENTRAL VALLEY REGION (NO.

		Anolyzed by i			USGS													
		bid - Coiform IIy MPN/mi			Median 2.3	Maximum 230.	Minimum 0.13											
		- pid u			m	8	15		c	30	00	25	.7	20	7	-		
		Hordness os CoCO ₃	maa maa		0	0	7		0	7	0	0	0	0	0	m		
		Hord 98 C	E		53	52	36		8	22	32	33	30	21	33	65		
		- Pog			12	1,4	13		17	17	1,4	12	17	16	13	10		
	Total	spilos in pon			46L	a 01	57 e		51 е	35 е	51 e	53 e	53 f 52 g	34 6	53 e	84 f		
		Other constituents											PO ₁₄ 0.00			AS 0.00 ABS 0.0 POL 0.00		
		Silico (SiO ₂)	1										15			91		
	lon	Boron (B)			0.0	0.0	0.0		0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0		
	per million	Fluo-	=										0.2			0.0		
A. 21a)	ports per million	trota	(CON)										0.8			0.05		
ILE (ST	ports pe	Chlo-	(2)		1.5	0.0	0.00		1.5	2.2	0.03	1.5	0.03	0.03	0.0	2.0		
SMARTVI	Ē	Sut - fots	(204)										0.0			6.0		
TR NEAR	stituents	Bicor- bonete	(HCO3)		69	30	4.3		39	26 0,43	39	99.0	38	27	41	68		
TUBA RIVER NEAR SMARTVILLE (STA. 21a)	Mineral constituents	Corbon-			0.0	0.00	0.0		0.00	0.00	0.0	0.0	0.0	0.00	0.0	0.00		
¥	M	Potos-	Ŕ.										0.0			0.03	-	
		Sodium (No)			3.2	1.8	2.6		2.2	0.00	0.10	0.00	0.10	1.8	0.10	3.2		
		Mogne-	(Øw)										2.6			3.3		
		Colcium (Co)			1.06	0.500	0.71e		0.630	0.430	0.63	0.66	8.0	0.40	0.66	0.90		
		I el			7.0	6.8	7.3		7.1	7.1	7.3	7.3	7.1	7.1	7.7	7.9		
	Cascillic	conductance (micromhos			116	92	93		75	51	74	11	17	50	11	116		
		9 5	%2at		8:	8:	106		97	106	901	103	109	104	100	103		
			Edd		9.6	10.2	11.7		12.0	11.7	11.9	9.11	11.5	10.4	9.5	8.8		
		E C	7		72	57	51		t+3	51	9	20	55	65	19	74		
		Dischorge Temp			1,08	1010	13600		870	9730	1570	3230	0509	2770	765	553		
		ond time acmpled	F.S.1.	1962	10/1	11/11	12/3	1963	1/9	2/5	3/6	1000	5/1	9/2	7/9	9/13		

Field pH

Leboretory pH.

Sum of colcium and magnesium in epm.

Sum of colcum and magnessum in epm. Iron (Fe), oluminum (Al), eracie (As), capper (Cu), lead (Pb), mangenese (Mn), zinc (Zn), and hexerelant chremium (Gr¹⁶), reported here es 0.00 except as shown.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Grevimetric determination.

Mineral analyses mode by United States, Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Bureau of Reclamption (USBR); United States Public Health Survice (USPHS); San Benedino County Flood County Flood Opsition (WWD), Los Angeles, Department of Water and Power (LADWP); City of Los Angeles, Department of Beach, Department of Water Resources (DWR); as indicated. Annual medon and range, respectively. Coloulared from analyses of dupt-care monthly samples made by Colifornia Ospaninean of Public Health, Division of Labaratoriaes, or United States Public Health Service

CARSON RIVER, EAST FORK NEAR MARKLEEVILLE (STA. 115) OF SURFACE WATER LAHONTAN REGION (NO. 6) TABLE D-4 ANALYSES

		Analyzed by i			USCS								
	4	bid - Coliform Analyzed			Median 5.	Maximum 230.	Minimum 0.62		_				
	Total	- bid - fy			5	-	н		CV.	-27	m	-1	20
		Hordness es CoCO ₃	O E dd		10	0	0		0	0	0	0	0
		Hord Osc	Total		94	43	54		27	24	94	55	[7]
	9	pos -			047	8	31		34	5.1	25	5.7	23
L	Total	solves solids	in ppm		105e	916	97e		102°	95e	95°	113e	76.F
		9	- 1										PO ₁₁ 0.10
		Boron Silica	(\$0.0\$)										81
_	llion				00	0.1	0,1		0,1	0.1	0.1	0.2	0.0
millio	per million	Fluo-	(F)										0.00
ports per million	equivolents	_	(NO ₃)										0.00
à	equive	Chlo-	(C)		0.11	4.4	4.8		5.8	2.8	4.1	3.2	2.4
	e.		(504)										6.0
	stituent	Bicar	(HCO ₃)		74	64	1.08		70	65	66 1.08	76	57
	Mineral constituents		(CO3)		00.00	0,00	0.00		000	00.00	00.00	0.00	00
	Min	Potos-	(X)										0.03
		Sodium	(D N)		14	8.6	9.4		10	7.8	7.2	9.4	5.7
		Mogne-	(Mg)										2.6
		Colcium	(00)		<u>16.0</u>	0.36	0.916		0.876	276.0	0.92	1.10	0.60
		Ŧ.	مراه		7.5	7.5	7.3		7.3	7.8	7.4	7.9	7.4
	Spacific	(micromhas	0 62 10		142	123	131		138	129	129	153	108
			%Sat		101	104	8.		8	103	104	102	103
		Oissolved	mdd	_	9.5	10.6	11.7		11.6	10.7	10.5	10.9	10.4
		Ts mp			15	143	33		33	27	7 7	04	717
		Dischorge Tamp			63	88	95						
		ond time	P.S.T	1962	10/4	11/8	12/13	1963	1/10	2/14	3/7	4/4	5/2

Laboratory pH. o Freld pH

Sum of colcium and magnesium in epm.

Sum of calcum and magnessum in spin.

Iron (Fe), aluminum (Al), crace (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (Cr ¹⁵), reported here as 0.00 0.00

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination.

Annual madian and image respectively. Calculated from analyses of dual-trans mode by California Department of Public Health, Division of Laboratories, or United Stores Public Health Service
Mineral analyses made by United States Geological Survey, Quality of West Bornel (USS), United States Designed Survey, Charles States Public Health Service (USPHS), San Bernardine Charupy Flood
Control Division (SDECP), San Bernardine Coldman (AMD), Las Angeles, Department of Wester and Power (LADMP), City of Las Angeles, Department of Public Health (LADPH), City of Lang Beach, Department of Public Health (LADPH), City of Lang Beach, Department of Public Health (LADPH), City of Lang Beach, Department of Public Health (LBDPH), City of Lang Beach, Department of Native Resources (DWR), as indicated.

8 32505-D-H b-61 200

except as shown.

13 3,4

J170 326

0.01 ABS 0.0 POL 0.05

AS

128

1.2

1.2

3.4

4.5

1.1

2.3

27

0.00 0.00

52°e

0.0

1.4 0.0

38

00.0

3.7 2.8 4.8

0.53 0.380 0.18

6.9 55 25.5

7 52 16

33 87 99

6/6 7/11

100 8

> 6.6 4.8

CARSON RIVER, WEST FORK AT WOODFORDS (STA. 115a) ANALYSES OF SURFACE WATER LAHONTAN REGION (NO. 6)

		Anolyzad by §		USCS											
		Hordness bid - Coliform as CoCO ₃ 11 MPN/mi Total N C. nppm		Median 23.	Maximum 230.	Minimum 0.6									
	Tur	- bid - ty mogan		m	2	0.8		5	-	cu	CV.	@	C)	5	52
		Hordness os CoCO _S Totol N.C. ppm ppm		0	0	0		0	0	0	0	0	0	0	0
				35	28	58		98	77	56	56	21	8	12	58
L	9	neo e		54	21	21		23	53	19	8	19	18	18	67
	Total	spilos spilos upod ul		634	59	8		9ħ9	53e	55	56°	1444 1468	450	142°	51 [£] 538
		Other constituents										POL 0.00			AS 0.01 ABS 0.05
		(Silico										15			14
	lion	Boron (B)		0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	01	0:0
million	par million	Fluo- rids (F)										0.00			0.01
ports per million	squivalents p	rrots (NO ₃)										0.00			0.02
l a	squivo	Chlo- ride (Cl)		1.5	1.4	0.0		2.2	0.5	1.5	1.5	0.03	0.0	0.03	0.0
	c.	Sul - fots (SO ₆)										2.0			0.05
	Constituents	Bicor- bonota (HCO ₃)		43	99.0	42		43	36	37	39	30	31 0.51	28	0.64
	Minsrol con	Corbon- ots (CO ₃)		0.0	000	000		0,0	000	00.0	000	0.0	0.00	0.0	000
:	Ž.	Potos- sium (K)										0.0			1.6
		Sodium (No)		4.5	3.4	3.5		0.18	3.4	0.12	0.13	2.4	2.4	2.1	3.2
		Mogns- sium (Mg)										0.06			0.23
		Colcium (Co)		0.64°	0.560	0.57		0.60	0.49	0.51°	0.53	0.36	0.450	0.420	0.27
L		H elo		7.5	7.3	7.1		7.7	7.5	7:7	7.3	7.1	6.9	7.5	7.3
	Spacific	(micromhos of 25°C)		77	72	74		78	69	67	69	54	55	53	7.
				66	103	100		93,	104	102	103	104	102	101	96
		Oxygen oxygen ppm %So		9.5	10.5	11.4		11.5	11.4	10.7	10.8	10.9	10.7	9.1	8
		Tamp in of		67	C 77	35		33	37	04	07	07	01	51	\$5
		Dischorge Tamp		118	53	19M.D.		17	No Gage						65
		ond tims sompled P.S.T.	1962	10/4	11/8	12/13	1963	1/10	2/14	3/7 1415	4/4 1015	5/2	0/9	7/11	9/12 0845

Field pH

Loborotory pH

Sum of catching and magnessium in ages.

100 (Fe), aluminum (A1), exported here os $\frac{0}{0}$ except as shown to the sum of the sum o Sum of colcium and magnesium in opm.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Grovimetric determination.

Annual medon and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratorists, or United Stores Public Health Service
Might Stores Coological Survey, Quality of Mater Based, USSS; United Stores Coological Survey, Charley Stores Coological Survey, Charley Stores Society of Mater Stores Posterior of Such Might). Las Angeles Department of Meter and Pewer (LADMP), City of Lang Based, Department of Public Health & Angeles, Department of Meter Stores (DADMP), City of Lang Based, Department of Meter Stores (DAMP), Serviced of Southern Department of Meter Stores (DAMP), Serviced Southern Stores (DAMP), Terminal Testing Control Stores (DAMP), Terminal Testing Control Stores (DAMP), Serviced Stores (DAMP), Testing Control Stores (DAMP),

32:05-0-H 6-61 200 SPU

ANALYSIS OF SUITAGE WATER
LANGER FOR STATE (S. C.)
LANK LAHOF AC SLAND (S.A. V.)

ANALYSES OF SURFACE WATER LAHONTAN REGION (NO. 6) LAKE TAHOE AT BLJOU (STA. 39) TABLE D-4

Department of the Interior, Bureau of Rectamation (USBS), Indied Stores Poblic Members Survice (USBSS), San Bernardino County Fland Witten and Democratic County Fland and Admitistrated Democratic County Fland and Admitistrated Democratic County Fland and Admitistrated Bureau and County Fland and Admitistrated Bureau County Fland Admitistrated Bureau County Fland Bureau Co

	_	10	-													 		
		Anolyzed by i			USGS													
	-	n ppm MPN/mi			Median 0.23	Maximum 23.	Minimum <0.045											
r	1	- hid - hid modul	1		91	-	-		-	-	п	Q.	-1	8				
		os CoCOs	mod mod		0	0	0		0	0	0	0	0	0				
		0 0 C	600		34	₹	33		33	51	었	8	×	98				
	9	- Pos			33	88	27		8	31	27	27	98	31		 		
L	Toto	spilos de dide			63e	62°	63e		,c9	45 _e	61°	, 65	63 ^t	51 ^e				
		Other constituents											PO4 0.00					
		Silico (SiO ₃)											켐					
	lion	Boron (B)			0.1	0.0	0.0		0.0	0.0	0.1	0.0	0.0	0.0				
million	er mil	Fluor	\rightarrow										0.0					
ports per million	equivalents per million	trote	(NO ₃)										0.6					
la la	equiva	Chio-	ĵ		0.08	1.8	3.1		1.8	0.00	0.00	0.08	0.00	2.0				
	<u>=</u>	Sul -	(804)										1.0					
	tituents	Bonate	(HCO)		56.0	54 0.89	0.90		54 0.89	35	53 0.87	50 0.82	52 0.85	43				
	Mineral constituents	Corbon-			00	00.0	0.00		0.00	000	0.0	0.00	00.0	0.00				
	Win	Potos-											2.0					
		Sodium (No)			6.8	6.1	5.7		6.4	4.4	5.5	5.0	5.7	5.2				
	İ	Magne-	(Mg)										2.3					
		Calcium (CO)			0.680	0.68°	0.66°		0.66	0.450	0.64°	0.60	9.5	0.52c				
		I _{m10}			2.7	7.4	7.3		7.3	7.2	7.4	7.3	7.3	7.1	(63			
	Specific	(micromhos of 25°C)			76	95	96		96	69	93	8	95	92	Discontinued 6/30/63			
T		P	%Sot		68	ま	93		88	66	102	104	%	89	sconti			
		Dissolved	m dd		7.8	9.1	8.6		7.6	10.1	10.3	10.2	9.5	7.9				
-		Temp in OF			25	5 77	39		82	7,1	27	77	54	12	Station			
		Dischorge Temp																
		Oots ond time	P.S.T.	1962	10/4	11/8	12/13	1963	1/10	2/13	3/6	4/3	5/2	9/9				

b Lobarotory pH.

c Sum of colcium and magnesium in epm.

Sum of cocicum and magnesium in epin.

Iron (Fe), oluminum (A1), orsenited here as $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

h Annual median and longe, respectively. Calculated from analyses of duplicate manthly samples made by California Department of Public Health, Division of Loboratories, or United Stores Public Health Service.

32505-0-8 6-61 200 san Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS), United States Department of the Interior, Sureau of Reclamation (USBR), United States Department of Water and Power (LADMP), City of Los Angeles, Department of States of Superson (MMD); Los Angeles, Department of Water Resources (DMR); as indicated.

Public Health (LBDPH); Terminal Testing Lebaratories, Inc. (TTL); or California Department of Water Resources (DMR); as indicated.

ANALYSES OF SURFACE WATER LAKE TAHOE AT TAHOE CITY (STA. 38) LAHONTAN REGION (NO. 6)

		Anolyzed by i		3030												
H	4	/mi		Median UE	Maximum 23.	Minimum O.O4)										
L		Hordness bid - Coliform's os CoCO ₃ ity MPN/ml Totol N C ppm		Med 0.6	Mux 23.	Minim (0.0%)										
-	J o	a s of		01		Cu .		-			~	2			.ed	
		Hordness os CaCO _S Totol N C ppm ppm		0	0	999		0	0	0	0	0	0	0	0	
-		sod - no		31 34	29 34	28		36 33	£ 8	27 33	26 34	27 34	28 34	35	56 32	
1	loto	pevice police in ppm		1 36		0.70		64.6	**************************************	0,5	659	1 10 10 10 10 10 10 10 10 10 10 10 10 10	636	20%	ăs"	
-	٦			-Ç	9	5	_	9	3	٥	9		9	2/		
		Other constituents										AS 0.00 ABS 0.0			AS 0.00 AIS 0.0 PO ₁ 0.15	
	Ì	Silica (SiO ₈)										77			21	
	llion	Boron (B)		0.1	0.0	0.0		0.0	0.0	0:0	0.0	0.0	0.0	0.0	0.0	
million	per milli	Fluo- rids (F)										0.0			0.2	
parts psr million	equivalents	trots (NO ₃)										0.0			0.0	
١	Ainba	Chio- ride (CI)		4.2	0.04	3.2		2.2	2.0	2.0	2.8	0.03	3.0	3.6	0.00	
	=	Sul - fots (SO ₄)										0.05			0.02	
	Stituent	Bicar- bonate (HCO ₃)		74	56.0	88		54 0.89	54	5th 0.89	54 0.89	52 0.85	54 0.89	144 0.72	50 0.82	
	Minaral constituents	Carbon- ate (CO ₃)		0.0	0.0	0.00		0.00	0.00	0.0	0.00	0,00	000	000	00.0	
:	Min	Potes- sium (K)										1.6			2.1	
		Sodium (No)		7.2	6.4	6.3		6.4	6.0	5.7	5.2	6.1	6.3	0.20	5.5	
		Magne- sum (Mg)										2.3			0.21	
		Colcium (Co)		0.68	0.68	0.71		99.0	49.0	99.0	19.0	9.8	0.68	0.63	8.6	
		T O		6.9	25.5	7:5		7.3	7:5	7.5	7.1	7.9	7.3	7.4	7.5	
	Spacific	conductonce (micromhos of 25°C)		38	97	100		95	95	33	8	ま	3.	88	8	
		Discolvs d oaygan ppm %Sat		100	119	89		66	102	104	8	110	104	104	8	
		Oiseo oay oay		8.2	10.7	9.6		9.6	10.1	10.6	10.4	6.6	4.6	9.6	7.4	
		Ten in of		93	2	36		57	14.3	41	39	2	50	57	65	
		Oschorge Temp in ofs in of														
		ond time sompled P S.T	1962	10/3	11/7	2/12	1963	1/9	2/13	3/6	1,345	5/1	6/5	7/12	9/13	

Hd bloid o

Lobaratary pH

sam or carcum and magnesium in spin.

Iron (Fe), aluminum (Al), reported here on (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hearivalent chromium (Ci 16), reported here os 90 except os shown 100 except os shown. Sum of calcium and magnesium in opm.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents

Grovimetric determination.

Mineral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Opportment of the Interior, Survey and by Control Observations (WO), Los Angeles, Opportment of Water and Power (LADMP), City of Los Angeles, Department of Water Resources (OWR), as indicated.

Public Health (LBDPH); Terminal Testing Laborations, Inc. (TTL), or California Department of Water Resources (OWR), as indicated. Annual madian and range, respectively. Colculated from analyses of dupticate monthly samples made by Colifornie Department of Public Health. Division of Laboratories, or United Stores Public Health Sevice

2

שושייישו היים אנים

116

ANALYER OF FLIFF ACT WATERS
LABOREAN HOUSE (1)
LABOR TAILE AFFINE VIELD (FIR. 17)

ANALYSES OF SURFACE WATER LAKE TAHOE AT TAHOE VISTA (STA. 37) LAHONTAN REGION (NO. 6)

_																	
		Anolyzed by i		USGS													
	4	bid - Coliform" ity MPN/mi		Median 0.62	Maximum 2.3	Minimum (0.045											
	Tur-	P A C		15	-	mi		-	-	м	٦	н	Q				
		SON NO		0	0	0		0	0	0	0	0	0				
		Pord Ppm		36	34	35		35	33	36	34	34	35				
L	9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		59	8	59		59	8	25	56	27	27				
	Total	solved eolids in ppm		99	64e	63		999	63	67°	65°	63 ^f	9 ^{†19}				
		Other constituents										PO ₁ 0.0					
		(SIO2)										77					
-	lion	Boron (B)		0.2	0.0	0.0		0.0	0.0	0.1	0.0	0.0	0.0				
millior	per million	Fluo- rids (F)										0.2					
ports per million	equivolents	Ni- trate (NO ₃)										0.7					
٩	equiv	Chlo- ride (Ct)		3.4	1.5	3.5		2.2	1.8	0.03	2.0	1.5	2.4				
	<u>.</u>	Sul - fots (SO ₄)										0.05					
	187:Tuent	Bicor- bonate (HCO ₃)		54 0.89	55 0.90	54 0.89		56.0	52 0.85	58 0.95	5 ⁴ 0.89	53 0.87	53				
	Mineral constituents	Potos- Corbon- sium (K) (CO ₃)		0.0	000	0.0		00.0	0.0	0.0	00.0	00.0	000				
1	Ž.	Potos- sum (K)										2.0					
		Sodium (No)		6.7	6.3	6.4		6.4	5.9	5.5	5.5	5.9	6.0				
		Magne- sium (Mg)										2.4					
L		Colcium (Co)		0.72	69.0	07.0		02.0	99.0	0.73	0.67	9.4	69.0				
		F ello		6.0	8.2	7.3		7.7	7.7	7.4	8.0	7.3	7.3	0/63			
	Specific	(micromhos of 25°C)		26	95	16		%	93	66	96	46	66	Station Discontinued 6/30/63			
		Dissolved osygen ppm %Sof		102	107	100		106	106	105	108	108	104	sconti			
		Dieso osy ppm		8.1	9.1	4.6		10.2	10.4	10.3	10.3	7.6	4.6	ton Di			
		Temp in oF		9	55	74		745	41	7177	94	20	20	Stat			
		Dischorge Temp in cfs in of															
		Dote ond time sompled P.S.T.	1962	10/3	11/7	27/27	1963	1/9	2/13	3/6	14/3	5/1	6/5				

b Loborotory pH.

K,

c Sum of colcium and magnesium in epm.

c. Sum of colcium and magnesium in 6pm. dept. (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavolent chromium (G^{+6}), reported here as $\frac{0.0}{0.00}$ except as shown.

Derived from conductivity vs TDS curves

Determined by addition of analyzed constituents.

Gravimetric determination.

³²³⁰⁵⁻DH 0-c1 20U Mineal analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Opportment of the Interior, Bureau of Reclamation (USBR); United States Public Health Service (USPHS), Son Benach County Flood County Flood County Flood District (SECFCD); Meropoliton Water District of Southern California (MWD); Los Angeles, Department of Water and Power (LADMP), City of Los Angeles, Department of Public Health (LBDPH); Terminal Testing Laboratories, Inc. (TTL), or California Department of Water Resources (DWR); os indicated. Annual median and range, respectively. Colculated from analyses of dupticate manthly samples made by California Department of Public Health, Division of Laboratories, or United States Public Health Service

ANALYSES OF SURFACE WATER

LAHONTAN REGION (NO. 6)

		Anolyzed by 1		0808											 -		
	,	bid - Coliform			Median 23.	Maximum 230.	2.3										
	- Z	- piq -			F	~	~		~	- 1	~			-	*.	-	*.
		200°S	Edd		a)	0	0		5		0	^	С	٥	٥	-	5
			E dd		98	53	07		32	777	23	~	36	817	22	73	78
	P.	to pos			80	97	17		15	1.7	77	92	16	17	Ħ	- i	13
	Totol	solved solids											1909 698				12051
		Other constituents											Pol ₁ 2-12				PO _{1, 9.10} As ABS 0.00
		Silico (SiO ₉)	1										81				Ä
	ion	Boron (8)			C O		0.0		0,0	0:0	0.0	0.0	0.0	0.0	0,0	악	0.0
	milion er mil	- on -											1 S.				0.01
4. 17b)	ports per million equivalents per million	Ni- trote	\rightarrow										0.00				10°0
LLE (ST	DAIND e	Chlo	(ci)		0.02	7.	1 oc 3		0.00	0.03	0.03	8.00	0.03	0.03	0.03	0.02	0.08
SUSAINT	Ē	Sul - fate	(20%)										0.02				0.00
SUSAN RIVER AT SUSANVILLE (STA. 17b)	stituents	Bicar- bonate	(HCO3)		50.02	1.25	54 0.32		1.30	1.03	13	18:0	20.0	52	35	1.09	1.80
SUSAN R	Mineral Constituents	Corbon-	(502)		3.00	5,00	00.00		00.00	0.00	0.0	0.00	00.0	00.00	907	08	0
	Mine	Potos-	ž										7.00				0,00
		Sodium (Na)			0.10	2.7	7:00		0.21	0.18	2.17	3.5	7	3.4	0.10	0.23	25.5
		Magne- sum	(Mg)										6.9				1.71
		Coleium (Co)			1.	8.1	62:		1.17	0.0	1.05	0.76	3.1	0.00	0.50	.24.1	11.35
		Ĭ.	9/10		1.	-100	213		4:	32	7.7	7.5	7.4	10	11:	31.0	4.5
	Specific	(micramhas of 25°C)			20	121	93		132	103	117	20	70	95	28	161	172
		D C	%sot		%	30	8		16	83	33	3	801	36	76	97	8
			Edd		10.7	11.5	10.9		11.	16.4	16.0	6.11	10.3	0.6	8.1	7.2	6.9
		Ts or			· .	140	4.6		55	43	39	35	91	53	3	7	8
		Dischorge Temp			16.7	44	~ ,		À	122	50	241	215	101	750	^	
		and time sompled		7	175	17.0	15.1	1,4,2	1/15	2/1)	31.	1,716	5/14 0650	6/5 0730	7/1	8/8	9/12

o Field pH

b Loboratory pH.

c. Jum of calcum and inspersion in terms of the contract of th c Sum of calcium and magnesium in epm.

Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

Gravimetric determination.

h Annyal median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Laboratories, or United States Geological Survey, Quelity of Water Bonech (USSS), thinked States Geological Survey, Quelity of Water Bonech (USSS), thinked States Geological Survey, Quelity of Water Bernardine California (WHO). Las Angeles, Department of Water and Power (LADWP), City of Las Angeles, Department of Water and Power (LADWP), City of Las Angeles, Department of Water Resources (DWR), as indicated the Angeles, Department of Public Health (LADPH); City of Las Angeles, Department of Water Resources (DWR), as indicated the Angeles, Department of Robert California Department of Water Resources (DWR), as indicated the Angeles, Department of Robert California Department of Water Resources (DWR), as indicated the Angeles, Department of Robert California Department of Water Resources (DWR), as indicated the Angeles, Department of Robert California Department of Water Resources (DWR), as indicated the Angeles, Department of Robert California Department of Water Resources (DWR), as indicated the Angeles, Department of Robert California Department of Water Resources (DWR), as indicated the Angeles, Department of Robert California Department of Water Resources (DWR), as indicated the Angeles, Department of Robert California Department of Water Resources (DWR), as indicated the Angeles, Department of Robert California Department of Water Resources (DWR), as indicated the Angeles, Department of Robert California Department of Water Resources (DWR), as indicated the Angeles, Department of Robert California Department of Water Resources (DWR), as indicated the Angeles, Department of Robert California Department of Water Robert California Department of Water Robert California Department of Water Robert California Department of Water Robert California Department of Water Robert California Department of Water Robert California Department of Water Robert California Dep

ONE OUZ 19-9 P-0-5052E

ANALYSES OF SUBSTACE WATCH LABORED HOLLON (NO. C.)

Control District Copy, Man Author States Control Copy, Copy (1997)

LAHONTAN REGION (NO. 6)

			Analyzed by i			USGS												
		-	bid - Coliform			Median 19.	Meximum 7000.	Minimum 0.23										
		Tur	- pid			3.8		C)		C)	9	ω		6	2	CV .	0.7	· .
			COS	PP		0	0	0		0	0	0	0	0	0	0	0	0
				Total		31	27	8		37	35	37	33	8	88	×	8	32
		Per	sod -			25	25	77		92	56	98	25	83	50	22	22	77
		Total	solved	E dd ei		63 ^f	55 f 638	265 798		75 t 79 k	72 f 79 8	70 f 73 8	3 69 J 99	28 X8	54 B	63 e	60 f 65 8	888
			Other contitional			POL 0.02 Color 0	Po, 0.17 Color 5	Pol, 0.00 Color 10		Color 5 POt 0.10	Color 20 PO ₄ 0.11	Color 20 PO ₄ 0.07		Color 20 NH ₁ 0.04 AS 0.00 ABS 0.01 FO ₁ 0.05	Color 20 POt 0.03		Color 10 PO ₄ 0.05	COLOR 25 NH, 0.00 AS 0.01 ABS 0.0 PO ₄ 0.06
			Silico	(2015)		19	17	18		23	23	19	84	19	8		19	15
		lion	Baran	(A)		90.0	0.05	0°0		0.09	0.03	0.00	0.04	0.05	0.03	0.0	0.04	0.00
	million	per million	Fluo-			0.0	0.1	0.0		0.00	0.2	0.00	0.00	0.0	0.00		0.00	0.00
A. 53)	ports per million		N.	(NO3)		0.13	0.00	0.0		0.01	0.9	0.4	0.5	 0.00	0.4		0.6	0.01
RAD (ST.		equivalents	Chlo-	(C)		0.00	3.0	0.00		3.7	2.8	3.4	3.9	1.4	0.03	2.8	1.2	0.06
NEAR FA		<u> </u>	Sul			1.5	0.6	0.02		0.05	3.0	0.08	3.3	2.1	0.0		2.1	0.0
TRUCKEE RIVER NEAR FARAD (STA. 53)		constituents	Bicar	(HCO3)		46 0.75	39	43 0.70		7. 0.88	46 0.75	1,7 0.77	44 0.72	99*0	37	43	43 0.70	67.0
TRUCKEE			Ü	(CO ₃)		00.0	00.0	000		00.00	000	000	00.0	000	00.00	000	0.0	00.00
	1	W	Potas-			1.6	1.4	0.03		1.6	1.4	1.4	0.03	0.02	0.02		1.7	0.04
			Sadium			5.1	0.19	4.7		6.5	5.9	6.2	5.2	3.8	3.4	4.0	0.18	0.21
			Magne-	(Mg)		0.21	2.1	2.4		2.9	2.8	2.9	2.2	2.1	0.16	71	0.23	2.3
			Calcium	(00)		8.3	7.4	8.0		10	9.4	0.50	9.6	7.8	8.1	0.64	7.4	9.0
			I G	ماه		7.5	7.5	7.3		7.4	7.3	7.3	7.3	7.3	7.1	7.3	7.5	7.3
		Specific	(micramhas)			93	92	83		105	%	76	102	75	91	83	80	98
				%sa+		16	86	103		76	102	101	100	100	102	101	8	76
			Dissaived .	. maa		9.1	6.6	10.9		11.9	11.5	10.9	10.5	10.3	9.8	0.6	4.8	80
			Temp in OF			95	54	41		×	37	39	1,2	43	83	4₹	R	56
			Cischarge Temp			380	787	109		237	001	297	516	1580	1260	1811	578	534
			and fine	P S T	1962	10/5	11/9	12/14 1055	1963	1/11	2/15	3/8	1,75	5/3 0745	6/7	7/12 0730	8/9	9/13

b Labaratory pH

c. Sum of scicium and magnesium in epm. d. Iran (Fe), oluminum (A1), arsencic (As), capper (Cu), lead (Pb), manganese (Mn), zinc (Zn), and hexavalent chromium (G⁺⁵), reparted here as $\frac{0.0}{0.00}$ except as shown. c Sum of calcium and magnesium in epm.

f Determined by addition of analyzed constituents. e Derived from conductivity vs TDS curves.

g Gravimetric determination.

h. Annual median and mags, respectively, Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Labbratories, or United States Public Health Service.

Mineral madyses made by United States Geological Survey, Quelity of Wester Boards (1970), United States Department of Health Ferrories (1970), Las Angeles, Department of Waster and Power (LADMP), City of Los Angeles, Department of Fublic Health (LADMP), City of Los Angeles, Department of Fublic Health (LADMP), Talk Department of Public Health (LADMP), Talk Department of Magnet Resources (DWR), as indicated.

ANALYSES OF SURFACE WATER TRUCKEE RIVER NEAR TRUCKEE (STA. 52) LAHONTAN REGION (NO. 6)

		Anolyzed by i		USCS													
	4	Hordnass bid - Coliform's S CoCO ₃ 11y MPN/ml		Median 6.2	Maximum 130.	Minimum 0.23											
	Tur.	- Pid c		CI	-	10		-		-	C)	m	CJ	-	6		
		N C OS			0	0		0	0	0	7	0	0	0	0		
				8	7.3	27		36	20	37	04	31	56	×	37		
	9	a od -		25	23	21		88	56	21	19	50	21	27	72		
	Total	solved solids in ppm		9 2	816	79°		77.0	63°	72°	78°	62 558	1,7e	999	67 ^f 718		
		Other constituents			,							PO _{1,} 0,00			AS 0.01 ABS 0.0 POL 0.05		
		Silico (SiO ₂)										g			15		
	Iron	Boron (B)		0.1	0.1	0:0		0.0	0.0	0.0	0:0	0.0	0.0	0.0	0:0		
million	per million	Fluo- ride (F)										0.2			0.0		
ports per million		frate (NO ₃)	,									0.6			0.00		
00	equivolants	Chlo- ride (CI)	-	6.6	2.5	0.7		0.08	4.8	2.8	4.5	1.8	1.6	3.2	3.2	-	
	U 1	Sul - fots (SO _q)										7.0			0.05		
	trituenti	Bicar- bonote (HCO ₃)		36.0	53	51	-	54 0.89	37	μ6 0.75	4,8 0.79	88.0	34	0.82	54 0.89		
	Minarol constituents			0.0	0.00	0.00		0.00	00.0	0.00	0.0	0.0	000	0.0	0.0		
	Mini	Potos- Corbon- sum ote (K) (CO ₃)										1.2			0.05		
		(No)		7.3	5.8	5.3		0.28	4.8	0.50	0.19	3.7	3.3	5.5	5.8		
		Mogns- sium (Mg)										2.7			2.9		
		Colcium Mogna- (Co) sium (Mg)		1.000	0.86c	0.85c		0.73c	0.61c	0.74c	0.80c	8.0	0.520	0.650	10		
		E elo		7:7	7.7	7.1		7.5	7.1	7:3	7.5	7.1	6.9	7:5	7.5		
	Spacific	(micromhos or 25°C)		109	113	11		103	88	100	109	78	99	93	103		
				102	111	100		104	&	106	107	102	103	103	8		
		Dissolved oxygen ppm %So		9.1	10.8	11.8		11.8	10.5	10.7	10.8	9.6	6.6	8.7	4.8		
		Te age in of		25	4.5	33		35	39	4.3	£ 3	9	94	95	95		
		Discharge Tamp		61	39	43		Not									
		ond time sompled P S.T	1962	10/3	11/7	12/12	1963	1/9	2/13	3/6	1,300	5/1	6/5	7/12	9/13		

b Loborotory pH

Jum of colcum and magnessum in Epm. 100 seed (Pb), manganase (Mn), zinc (Zn), and hexavalent chromium (Gr. ¹³), reparted hare as 0 0 except as shown. Iron (Fo), alumnum (Al), areas, as a copie of the control of the copie of Sum of colcium and magnesium in epm.

Darryad from conductivity vs TDS curves

Datemined by addition of analyzed constituents

Grovimetric determination

32505-LH 6-61 2XU Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by Calculation Department of Public Hoolift, Division of Laboratories, or United States Dublic Hoolift Service

Marcal analyses made by United States Geological Survey, Chalift of Words Department of Words made and Personal Control States (SERCE), Division States Public Hoolift States (SERCE), San Bernardina Chalift of Words and Personal States (SERCE), San States of States (Seathern Coldonia (ARD), Les Angels a Department of Words and Poblic Hoolift Chalift Hoolift, City of Long Beach, Department of Words and Chalift of States of States (Seathern Department of Words Resources (DWR), as indicated.

ANALYSES OF SURFACE WATER LAHONTAN REGION (NO. 6)

Public Warth It Billish Jamenni Taating Lebentuara In. (TTL) of California Designation of Manager States and Name (ADMP), City of Low Angeles, Department of Public Madellia Manager States and Name (ADMP), City of Long Based, Carlotte Madellia Mad

WALKER RIVER, EAST NEAR BRIDGEPORT (STA. 116a)

			_	_												
	Anolyzad by i			SCS0												
	Hordness Tur- os CoCO ₃ Ity os CoCO ₃ Ity MPN/ml by i			Median 2.3	Maximum 62.	Minimum <0.045										
	Pid -			6	00	m		5	Ħ	7	2	10	CV .	01	L7	
	Hordness os CoCO ₃ Totol N C	E		0	0	0		0	0	0	0	0	0	0	0	
L	1	E		82	11	81		8.	19	69	71	92	73	53	96	
	Sod -			53	88	65		88	31	33	33	20	e M	28	27	
	solids in ppm			142e	148е	150°		165°	135 ^e	135e	145°	141 ^f 1508	148e	966	105g	
	Other constituents											PO4 0.20			AS 0.01 ABS 0.0 PO4 0.45	
	Silica (SiO ₂)											139			83	
	5			0.1	0.1	0.1		0.1	0.1	0.1	0.1	0.2	0.1	0.2	0.0	
million	Fiuo- ride (F)											0.05			0.0	
parts per million	hio- Ni- Fluo- Borcation (CI) (NO.) (F)										-	0.03			4.5	
à	Chio- ride (CI)			2.9	0.07	43 0.12		5.0	3.5	2.7	4.2	3.5	3.9	1.4	0.03	
5	Sul - fats (SOs)					_						9.0			8.2	
stituent	Bicar- bonats (HCOs)			116	2.00	124		138	105	104	112	110	117	1.16	83	
Mineral constituents	Carbon- ots (COs)			0,00	0.00	0.0		0,00	00.0	0.00	00.00	5 0.17	010	0.00	0.00	
2	Potas Stum (X)											0.10			3.1	
	Sodium (No)			15 0.65	14	15		16	14 0.61	15	16	16	16	9.3	.10	
	Magns- sium (Mq)											3.9			2.1	
	Cataum (Ca)			1.560	1.54c	1.620		1.80c	1.34c	1.310	1.420	24	1.470	1.020	19	
	H all			7.6	7.7	8.0		7.5	7.5	7.5	7.7	8.3	7.5	8.0	8.3	
	Specific conductance (micromhos of 25°C)			210	220	223		245	200	201	215	226	220	141	160	
	Ossolvad osygan			35	107	103		8	8,	107	104	107	%	103	986	
				7.4	9.8	10.6		10.0	10.1	10.5	9.8	9.3	8.3	7.8	4.9	
	Tan in of			®	84	3		017	04	F#3	94	22	52	63	69	
	Dischorge Tamp			80	16	11		10	167	9.6	70	134	Lhu	984	239	
	Dots ond time sompted P.S.T.		1962	10/4	11/8	12/13	1963	1/10	2/14 1015	3/7	1230	5/2	6/6	7/11 0930	9/12	

b Laboratory pH

c Sum of calcium and magnesium in epm.

6. Sum or continuo neu maginassian in espiri.

d. Iron (F.B.) aluminum (AI) areasian (S.S.), copper (C.U.), lead (P.B.), manganese (MA), zinc (Z.A.), and hexavalent chramium (Cr. *⁶), reparted here as 30,00 mm. and

e Derived from conductivity vs TDS curves.

Determined by addition of analyzed constituents.

g Gravimetric determination.

h Annual median and range, respectively. Calculated from analyses of duplicate monthly samples made by California Department of Public Health, Division of Leboardories, or United States Public Health Service

Minaral analyses made by United States Geological Survey, Quality of Water Branch (USGS); United States Department of the Interior, Sureau of Reclamation (USBR); United States Public Health Service (USPHS); San Benardina California (MMD); Las Angaless Department of Water and Power (LLDWP), City of Las Angaless, Department of Rubic Health (LBDPH); Terminal Testing Laboratories, Inc. (TTL); an California Department of Water Resources (DMR); as indicated.

THE CHECKMAPHIC ANALYSIS OF BURFACE WATER CHECKER WATER

ANALYSES OF SURFACE WATER TABLE

WALKER RIVER, WEST NEAR COLEVILLE (STA. 116) LAHONTAN RECION (NO. 6)

	Anglyzed			USGS											-
	Tur- bid - Coliform			Median. 5.	Mackimum 7000.	Minimum 0.12									
	- P - A	mgg u		m	0	-		e	-	м	9	7	CV	9	m
	Mordness es CoCO.	PPR		0	0	0		0	0	0	0	0	0	0	0
				20	35	14.3		9	35	36	4.3	20	50	13	23
	Cent	5		30	*	14.3		93	88	88	27	88	8	22	25
-	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	solids in ppm		91°	746	103		164	9.Le	71e	834	538 538	34°	22 ₆	768
		Other constituents										PO _{1,} 0,00			AS 0.01 ABS 0.0
		(SiO ₂)	_									01			2
1		(8)		0.1	0:0	0.1		0.3	0.0	0.0	0.1	0.0	0.0	0.0	0.0
unillon .	Fiuo-	(F)	 									0.0			0.01
ports per million	n 2	frote (NO ₃)		-								0.00			0.02
ports ps	2	(CI)		0.10	3.5	0.11		9.4	0.03	0.08	2.5	0.03	0.03	0.5	0.03
Ē	- Ins	fota (\$0 ₄)										3.0			6.4
constituents	Bicar	bonote (HCO ₃)		83	59 0.97	79		118	50	57	1.11	41 0.67	28	0.30	1.02
Mineral cont	1	(CO ₅)		0.0	0,0	00.0		0.0	0.0	000	0.0	0.0	0.0	0.00	00.00
Mine	Potos-	*ium (K)										0.0			0.08
		(0 N)		9.6	8.6	15		32	6.2	6.7	7.3	3.8	0.10	0.07	0.30
	Magne.	(Mg)										0.00			0.16
		(Co)	 	1.00°	0.71c	298°C		1.00°	0.70c	0.73	0.8€€	0.50	0.40c	0.26°	0.70
	I	810		8.1	7.4	8.1		7.5	7.3	7.3	7.6	7.3	6.7	7.1	7-7
	Spacific conductance (micramhas	ot 25°C)		521	110	152		543	66	105	123	75	51	33	911
		l is		104	110	101		96	102	108	901	104	104	107	101
	Dissolved	mdd		5.6	10.7	11.1		10.9	11.2	10.9	9.3	5.6	10.7	7.6	8.1
		1 _ 1		17	14.3	35		33	35	97	9,	2		9	22
	Discharge Temp			24	44	37MD		118	777	8	56	592	8%	960	%
	Date ond time		1962	10/4	11/8	12/13	1963	1/10	2/14	3/7	1400	5/2	6/6 0945	7/11	9/12

Field pH

Loborotory pH

Sum of calcium and magnesium in apm

Jun of calcium and magnesium in symmetric (Lu), lead (Pb), manganese (Mn), sinc (Zn), and hexavolent chromium (Ci⁻¹), reported here as 0.0 except as shown in (Al), and the companies of the Darived from conductivity vs TDS curves

Determined by addition of analyzed constituents. Gravimator determination

32555-LH 0-61 200 LPU Annul median and range, respectively. Calculated from analyses and duplicate manthly samples made by Caltilania Department of Public Health. Durston of Laboratories, or United States Beach (1955), San Bernadino Caunal Interior, Bureau of Reclamation (1958); United States Broach (1955), Lines States Department of Interior and protein an Interior, Bureau of Reclamation (1958); United States Broach (1956), Lines States Department of Interior and Power (LADMP), City of Las Angeles, Department of Walter and Power (LADMP), City of Las Angeles, Department of Public Health LEDPH), City of Lang Broach, Department of Public Health LEDPH), Tannal Testing changes are also calculated and support and associated and support and suppor

									Con	Constituents	in parts	per billion	40						
Station	Sto	Dote	Alumi.	Beryl.	ء	Codmium	=	-	Copper	Iron	Gallium	Garmo -		Molyb.	Nickel	Poal	Titanium	Vanadium	Zinc
		1963	(AI)	(Be)	(Bi)	(Cd)	(co)	(cr)	(Cn)	(Fe)	(00)	(Ge)	\dashv	(Mo)	(Ž	(Pp)	(T:)	(>)	(u Z)
American River at Nimbus Dam	22a	5-15	87.0	1.3*	0.67*	3.3*	3.3*	3.3*	***	6.1	6.7*	1.3*	3.3*	1.3*	2.3	*** ****	1.3*	1.3*	6.7*
American River at Sacramento	22	5-15	7.3	1.3*	1.3*	3.3* 3.3*	3.3**	3.3*	3,3*	5.8	6.7*	1.3*	* * *	1.3*	2.4	3.3.	1.3*	1.3*	6.7*
Bear River near Wheatland	78	5-9	१	1.3*	1.3*	3.3*	1.3*	3.3*	3.3*	23	6.7*	1.3*	* * * * * * *	1.3*	6.7	3.3.	1.3*	1.3**	6.7*
Cache Creek near Capay	80	5-8 9-11	8.7	1.3*	1.3*	3.3*	1.3*	3.3*	3.3*	6.1	6.7*	*19.0	3.3*	1.3*	3.7	3.34	1.3*	5.6	6.7*
Cache Creek near Lower Lake	75	5-8	13	1.3*	1.3*	3.3*	3.3*	3.3*	3,3*	22	6.7*	1.3*	* * *	1.3*	2.5	3.3.	1.3*	6.7	6.7*
Calaveras River near Stockton	16b	5-6 9-11	119 81	1.3*	1.3*	3.3*	3.3*	1.3*	3,3*	11	6.7*	1.3*	m.m.	1.3*	4.5	3.3*	1.3*	9.3	6.7*
Clear Lake at Lakeport	41	5-8 9-11	73	1.3*	1.3*	3.3*	3.3*	3.3*	3.3*	0.88	6.7*	1.3*	3.3*	1.3*	0.00	***	1,3"	e 6.	6.7*
Cosumnes River at McConnell	948	5-15	54	1.3*	1.3*	3.3*	1,3*	1.3*	3,3*	33	6.7*	1.3*	3.3*	1.3*	1.3*	3,3*	8.7	6.7	*1.9
Delta Cross Channel near Walnut Grove	8	5-14 9-11	1,4	1,3*	1.3*	****	3,3*	3.3*	3.3*	23	6.7*	1.3*	3.3*	1.3*	1.3*	***	1.3*	8.0 11	6.7*
Feather River, Middle Fork near Merrimac	19b	9-12	6.7	1.3*	*19.0	3.3*	3.3*	3.3*	3.3*	4.1	13 *	*19.0	3.3*	***19.0	1.9	3.3*	1.3*	3.1	13*
Feather River at Micolaus	50	5-9	130	1.3*	1.3*	****	3.3*	3.3*	3.3*	12.9	6.7*	1.3*	3.3*	1.3*	1.8	3.3.	1.3*	1.3*	6.7*
Feather River, North Fork at Big Bar	198	9-13	3.3	1.3*	*79.0	3.3*	3.3*	3.3*	3.3*	9.3	13*	*19.0	3.3*	0.67**	2.1	3.3*	1.3*	4.1	13*
Feather River near Oroville	19	5-9	119	1.3*	1.3*	3,3*	3.3*	3.3*	3.3*	15	6.7*	1.3*	3.3*	1.3*	2.5	3.3*	1.3*	1.3*	6.7*
Feather River, South Fork below Ponderosa Dam	19e	21-6	7. 7	1.3*	*19.0	3.3*	3,3*	3.3*	3.3* 1	п	13*	*19.0	3.3*	o.67*	0.67**	3.3*	1.3*	*79.0	13*
Mokelumne River near Woodbridge	23	9-11	227	1.3*	1.3*	* * *	3.3*	3.3*	**	27	6.7*	1.3*	3.3*	1.3*	1.3*	3.3*	1.3*	1.3*	6.7*
Old River at Mandeville Island	112	5-7	87	1.3*	1.3*	***	3.3*	3.3*	*****	233	6.7*	1.3*	**	1.3*	3.1	***	1.3*	10	6.7*
pi't River near Canby	17a	5-13	1130	1.3*	1.3*	***	3.3*	3.3*	3.3* 10	72	6.7*	1.3*	3.3**	1.3*	3.8	* * *	37	29	6.7*
Putah Creek near Winters	81	5-14	15,0	1.3*	1.3*	3.3*	3.3*	3.3*	3.3*	7.3	6.7*	1.3*	3.3*	1.3*	2.9	3.3*	1.3*	7.3	6.7*
Sacramento River at Bend	12e	5-3	54	1,3*	1.3*	***	3.3**	3.3*	***	25	6.7*	1.3*	3.3.3	1.3*	1.3*	** ***	1.3*	6.5	6.7

Note: For all stations the following results were also reported in May 1963: Silver (Ag) 5.0*

Results are less than the amount indicated. Results are equal. To but alightly less than the amount indicated. ٠::

TABLE D-5
SPECTROGRAPHIC ANALYSES OF SURFACE WATER CENTRAL VALLEY REGION (NO. 5)

	2,40	(Zn)	6.7	6.7*	6.7	6.7*	6.7*	6.7*	6.7	6.7*	
	mulbono/	(^)	0.0	2 22	6.5	6.5	8.7	8.7	3.3	1.3*	
	Titonium Vonadium	(T.)	7.3	1.3*	1.3*	8.0	10	1.3*	1,3*	1.3*	
	Lead	(Pb)		***	*. *. *.		***	**	3,3	***	
	Nickel	(×;)	2.8	3.3	2.3	2.6	2.5	2.6	1.3*	1.3	
	Malyb.	(MO)	1.3*	1.3*	1.3*	1.3*	0.67	0.67	1.3	0.67**	
uo	Mongo.	(Wu)	3.3		***	* * *	***	***	3.3*	3.3*	
Constituents in parts per billion	Sermo.	(Ge)	1.3*	1.3*	1.3*	1.3*	1.3*	1.3*	1.3*	1.3*	
in ports	Gollium	(00)	6.7*	6.7*	6.7*	6.7*	6.7	6.7*	*2.9	6.7*	
stituents	Iron	(Fe)	28	27	21	23	200	3.22	13	6.0	
Cor	Copper	(Cn)	29		3.3	3.3	**	* * *	3.3*	* * m.m. m.m.	
	Chro.	(Cr)	1.3*	3.3*	3.3*	3.3*	3.3.	3.3*	1.3*	3.3*	
	Cabalt	(00)	1.3*	3.3*	3.3*	3.3*	3.3	3.3	1.3*	3.3**	
	mnimpog	(PD)	3.3*	***	**	8° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8	**	***	3.3*	***	1 2 1 2 7
	Bismuth Cadmium	(8)	1,3*	1.3*	1.3*	1.3*	1.3*	1.3	1.3*	0.67*	0.03
	Beryl.	(Be)	1,3*	1.3*	1.3*	1.3	1.3*	1.3*	1.3*	1.3*	1060
	Alumi.		157	518	150	217	197	247	14.3	8.7	4 6 14
	Dote	1963	5-14 9-10	5-14 9-10	5-16	5-15	5-1	5-14	5-15	9-13	1
	Sto		1.3b	140	15b	13	12	16	13a	23	
	Station		Sacramento River at Colusa	Sacramento River above Colusa Trough	Sacramento River at Freeport	Sacramento River near Hamilton City	Sacramento River at Kesvick	Sacramento River at Rio Vista	Stony Creek near Hamilton City	Yuba River at Waryaville	Note: For all adaptons one following
			ed co	CO Ed	S	C3	S	C)	S	Ϋ́	

Note: For all stations the following results were also reported in May 1963: Silver (Ag) 5.0°

Results are less than the amount indicated.
 Results are equal to but slightly less than the amount indicated.

TABLE D-6 SPECTROGRAPHIC ANALYSES OF SURFACE WATER

timen feet in the commence of

LAHONTON REGION (No. 6)

	_		
Zinc	6.7*	13*	13, 12, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14
muibbno.	:		
V muinoti		1.3*	취취 연구
	+		
Nickel		1.5	
			0.057***
			0.067*
1	+	0.4	경 있 경 있
	.		
		***	స్త్రీస్ గోగ
Cobd11	1.3*	***	ణ్ణి చేంద
(Cd)	3.3*	*.*	ကိုကို ကိုက်
Bismuth (B)	1.3*	0.67*	0.67*
Beryl- ltum (Be)	1.3	1.3*	hh iii
Alumi- num (Ai)	65	5.5	15.7
Dote 1963	5-1	9-13	۲۶. ۲۶.
Sto	92		8
Stotion	ke Tahoe at Tahoe City		Truckee River near Parad
	Sto Dote Aum. Beryl. Bismuth Codmum Cobalt Chro. Copper Iron Gollium Germo. Mongo. Molyb. Nickel Lead Trionium Vondoum 1963 (Al) (Be) (Co) (Co) (Co) (Co) (Co) (Co) (Co) (Co	Sto Dote Alum. Beryl. Bismuh Codmum Cobol (Tron Collium Germo. Wongo. Wolyb. Nickel Lead Trionum Yondown 1963 (Al) (Be) (Bi) (Cd) (Cd) (Cd) (Cd) (Fe) (Gg) (Gg) (Gg) (Mh) (Mh) (Mh) (Mi) (Pb) (Ti) (V)	Sio Dote Alum. Beryl. Bismuth Codemum Cobot Chro. Copper Iron Gollium Germo. Mongo. Molyb. Nickel Lead Trionrum Voindamm Voinda

Note: For all statioos the following results were also reported in May 1963: Silver (Ag) 5.0*

* Results are less than the amount indicated. ** Results are equal to but slightly less than the amount indicated.

TABLE D-7 RADIOASSAYS OF SURFACE WATER

Central Valley Region (No. 5)

	O. T.			Micro-micro c	curies per liter	
11.00 11.00	No.	1963	Dissolved Alpha	Soud Alpha	Dissolved Beta	Solid Betu
American River, Middle Fork near Auburn	22b	5-15	4.0.0 4.0.4 4.0.4	2.0 + 0.0	8.0 ± 4.6 21.7 ± 6.4	3.6 + 4.6
American River at Nimbus Dam	22a	5-15	0.0 + + 0.0 0.3 0.3	0.0 + 0.1	15.6 ± 4.8	12.4 ± 4.8 2.5 ± 6.1
American River at Sacramento	22	5-15	0.0 + 0.2	0.1 + 0.2	14.4 ± 4.7	14.7 ± 4.7 0.0 ± 6.0
American River, South Fork near Lotus	22c	5-15	0.1 + 0.4	0.1 + 0.4	4.9 + 0.0	0.0 + 6.4
Antelope Greek near Mouth	88 8	5-3	0.1 + 0.3	0.00	0.0 + 6.3	2.9 +1 6.2 +1 0.0 +1 6.2
Antelope Creek near Red Bluff	88e	5-3	0.0	0.0 +1 0.0	1.1 + 6.4	3.5 ± 6.4
Battle Creek near Cottonwood	88b	5-3	0.0	0.2 ± 0.4 0.7 ± 0.4	3.0 ± 6.4	5.6 ± 6.1
Bear River at Mouth	20b	5-9	0.0 ± 0.2	0.2 ± 0.2	13.4 ± 4.5	46.3 ± 5.5
Bear River near Wheatland	78	5-9	0.00	0.0 +1.0.1 0.0 +1.0.0	14.4 ± 4.9	43.2 ± 5.6 7.9 ± 6.1
Big Chico Creek at Chico	85a	5-14 9-10	0.00	0.0 + 0.3	0.5 + 6.3	0.00
Cache Creek near Capay	80	5-8	0.0 4.0 4.0 4.0	0.0 + 0.1	0.0 ± 4.5 5.1 ± 6.1	0.0 + 5.2

RADIOASSAYS OF SURFACE WATER Green Verling Region (N. '')

TABLE D-7 RADIOASSAYS OF SURFACE WATER

2	
(No.	_
Valley Region	(Continued)
Central 1	

	7			W.cro-micro ci	curies per liter	
00101	NO.	1963	Dissolved Alpha	Solid Alpha	Dissolved Beta	Solid Bera
Cache Creek near Lower Lake	42	5-8	0.00	0.00	19.4 ± 4.6	15.6 + 5.2
Cache Creek, North Fork near Lower Lake	79	5-8	0.0	0.0	2.9 + 4.6	0.0 ± 5.5
Calaveras River at Jenny Lind	16a	5-6	2.0 ± 2.0 4.0 ± 2.0	4.0.5	18.4 ± 4.5	8.5 ± 4.4
Calaveras River near Stockton	16b	5-6	4.0 + 0.0	0.0 ± 0.2	13.1 ± 4.4 4.4 4.4 4.6.2	47.8 ± 4.9
Clear Creek near Igo	12d	5-3	0.0	0.00	0.8 + 6.3	2.5 + 6.3
Clear Lake at Lakeport	T [†] 1	5-8	0.0 ± 0.2 0.1 ± 0.4	4.0.0	10.3 ± 4.5	15.3 ± 5.2
Colusa Trough near Colusa	87	5-14	0.3 + 0.0	0.57 + 0.6	11.4 ± 6.2	9.3 + 6.1
Cosumnes River at McConnell	948	5-15	0.1 ± 0.4	0.9 ± 0.5	6.8 + 6.2	9.3 ± 6.2
Cosumnes River at Michigan Bar	466	5-15	0.00	0.0 + 0.2	6.8 + 4.6	5.7 ± 6.2
Cottonwood Creek near Cottonwood	12b	5-3	0.3 + 0.4	0.0 + 0.0	0.3	3.0 ± 6.2
Cotton Creek below North Fork Cottonwood Greek	11a	5-3	0.1 + 0.3	0.0 + 0.3	3.6 ± 6.3	3.0 +1+

TABLE D-7 RADIOASSAYS OF SURFACE WATER

Central Valley Region (No. 5) (Continued)

		(comparinged)	inca,			
	Sto	0 + 0 (Micro-micro c	curies per liter	
מובוסו	No.	1963	Dissolved Alpho	Solid Alpha	Dissolved Beta	Solid Betu
Cottonwood Creek, South Fork above Cottonwood Creek	113	5-3	0.1 + 0.3	0.0 + 0.3	3.9 ± 6.4	4.9 ± 6.0
Cow Greek near Millville	888 8	5-3 9-12	0.0 0.3 +1 0.3	0.00	0.0 +1.6.2	5.2 + 6.3
Elder Creek at Gerber	95a	5-3	0.2 + 0.2	0.1 + 0.2	4.9 + 0.0	0.0 ± 6.3
Elder Creek near Paskenta	13e	5-15	4.0 + 0.0	0.00 + 0.00 0.1 + 0.00	0.0 + 6.1	0.0 + 6.3
Feather River, Middle Fork near Merrimac	19b	9-12	0.1.10.4	0.1 + 0.4	4.7 + 6.0	1.7 ± 6.0
Feather River at Nicolaus	50	5-9	0.1 + 0.2	0.1 + 0.2 0.3 + 0.4	10.1 + 4.5	23.2 ± 5.2
Feather River, North Fork at Big Bar	19a	9-13	0.1 + 0.3	4.0 ± 9.0	1.1 ± 6.1	0.8 ± 6.1
Feather River at Oroville	19	5-9	2.0 + 1 + 0.0 + 1 + 0.0 + 1 + 0.0	0.0 + 0.2	14.0 ± 4.5	24.6 ± 5.2 2.1 ± 6.1
Feather River below Shanghai Bend	20a	5-9 9-13	0.0 +1+1 0.0 0.0	0.0 ± 0.1	16.7 ± 4.5	30.0 + 5.5
Feather River, South Fork below Ponderosa Dam	19c	9-12	4.0 + 2.0	0.0	0.9	0.0 + 6.0
Indian Creek near Crescent Mills	17d	5-1 ⁴ 9-13	0.4 + 0.4	4.0.1.0.0	5.5 + 6.5	0.0 ± 6.4
Indian Slough near Brentwood	107	5-13 9-10	0.2 + 1.0 0.2 0.1 + 1.0 0.4	0.00	7.2 + 4.5	6.6 + 4.4

Control Valley Region (No. 5)

TABLE D-7 RADIOASSAYS OF SURFACE WATER

Central Valley Region (No. 5)

		(Cont	(Continued)			
Station	Sta	Date		Micro-micro c	curies per liter	
	02	1963	Dissolved Alpha	Solid Alpha	Dissolved Beta	Solid Beta
Italian Slough near Mouth	106	5-7 9-10	0.0 ± 0.2	0.3 ± 0.0	8.6 + 4.3	14.5 ± 5.2
Little Potato Slough at Terminous	66	5-6	0.4 + 0.0	0.0 + 0.0	10.9 ± 4.5	9.2 ± 4.5
McCloud River above Shasta Lake	18	5-1 9-10	0.0 ± 0.4	0.1 + 0.4	4.5 ± 6.2 0.8 ± 6.1	0.0 + 6.2
Mokelumne River near Lancha Plana	23a	5-6	0.0 + 0.0	0.0 + 0.2	13.7 ± 4.4 7.0 ± 6.2	13.7 ± 4.4 4.4 ± 6.2
Mokelumne River at Woodbridge	23	5-7	0.0 + 0.2	0.2 ± 0.2 0.4 ± 0.4	13.0 ± 4.4 3.1 ± 6.2	16.0 ± 4.4
Old River at Clifton Court Ferry	104	5-7 9-10	0.6 + 0.2	0.4 + 0.2	16.4 ± 4.8	16.2 ± 5.4
Old River at Orwood Bridge	108	5-13	0.1 + 0.2	1.0 + 0.3	7.5 + 4.8	15.5 + 4.9 3.8 ± 6.2
Old River near Tracy	103	5-13	0.00	0.4 ± 0.3	14.2 ± 4.8 3.0 ± 6.1	14.9 ± 4.8
Paynes Creek near Red Bluff	888	5-15	0.6 + 0.5	0.0 + 0.4	5.9 ± 6.5	3.5 ± 6.5
Pit River near Bieber	17e	5-13	0.0 + 0.5	0.0 ± 0.4	16.2 ± 6.4	23.7 ± 6.5
Pit River near Canby .	17a	5-13	0.6 + 0.5	1.2 ± 0.6	17.1 ± 6.5 9.3 ± 6.2	53.2 ± 7.0 4.6 ± 6.1

TABLE D-7 RADIOASSAYS OF SURFACE WATER

Central Valley Region (No. 5) (Continued)

		Juon	(continued)			
Stofion	Sto	Date		Micro-micro c	curies per liter	
	02	1963	Dissolved Alpha	Solid Alpha	Dissolved Beta	Solid Beta
Pit River near Montgomery Creek	1.7	5-13 9-12	0.0	0.00	5.1 + 6.3	2.4 + 6.3
Pit River, South Fork near Likely	18a	5-13	0.1 + 0.4	0.9 + 0.6	16.4 ± 6.3 7.1 ± 6.3	17.8 ± 6.3 8.4 ± 6.3
Putah Creek near Winters	81	5-14	0.0 +1+1 0.0 0.0	0.0 + 0.1	5.8 ± 4.7	4.5 ± 4.7 0.2 ± 6.1.
Red Bank Creek near Red Bluff	88d	5-15	0.9 ± 0.5	0.1 ± 0.4	0.0 + 6.3	0.0 ± 6.3
Rock Slough near Knightsen	109	5-13	0.0 +1+1	0.1 + 0.2	9.2 + 4.7	6.1 ± 4.6 3.5 ± 6.1
Sacramento River at Bend	12c	5-3	0.1 + 0.2	0.0	10.0 + 6.2	5.6 + 6.2
Sacramento River at Butte City	87a	5-14	0.0 + 0.3	0.1 + 0.3	0.0 ± 6.4 10.7 ± 6.2	0.0 + 6.4
Sacramento River at Colusa	1.3b	5-14	0.0 + 0.3	0.00	3.4 ± 6.4 7.4 ± 6.1	2.9 ± 6.4
Sacramento River above Colusa Trough	174b	5-14	0.0 ± 0.4	0.0 ++ 0.0	5.9 + 6.3	12.2 ± 6.4
Sacramento River at Delta	11	5-1	0.0 + 0.5	0.1 + 0.4	8.3 + 6.2 + 6.1	0.0 +1 6.0
Sacramento River at Freeport	15b	5-15	0.3 + 0.4	0.0 ± 0.0 0.0 ± 0.4	1.7 ± 6.4 6.3 ± 6.1	6.0 ± 6.5
					On a do-1 = 0 on department of parameters of	

TABLE D-7 RADIOASSAYS OF SURFACE WATER

Central Valley Region (No. 5) (Continued)

00000	Sto			Micro-micro c	curies per liter	
	OZ	1963	Dissolved Alpha			Solid Beta
Sacramento River near Hamilton City	13	5-15	0.1 + 0.3	0.3 + 0.3	0.9 + 6.3	5.6 ± 6.4
Sacramento River at Keswick	12	5-1	0.2 + 0.5	0.0 + 0.4	5.1 ± 6.2 4.8 ± 6.1	3.8 + 6.2
Sacramento River at Rio Vista	16	5-14	0.2 + 1 + 0.2	0.2 ± 0.2 0.4 ± 0.4	6.3 ± 4.8	15.8 + 4.9
Sacramento Slough near Knights Landing	14a	9-10	0.1 ± 0.3	0.2 ± 0.4	0.0 ± 6.1	0.0 + 6.2
San Joaquin River at Antioch	28	5-14	0.2 ± 0.2	0.2 + 0.2	9.8 ± 4.7	15.5 ± 4.8
San Joaquin River at Mossdale Bridge	102	5-13	0.1 ± 0.2	0.6 ± 0.3	15.8 ± 4.6 4.3 ± 6.1	14.6 ± 4.6
Stony Creek at Black Butte Dam Site	13c	5-15	0.00	0.0 ± 0.3	3.3 ± 6.3	8.8 + 6.4 6.5 + 6.2
Stony Creek near Hamilton City	13a	5-15	0.1 ± 0.3	0.0 ± 0.2	3.9 ± 6.3	4.4 ± 6.3
Thomes Creek near Mouth	95b	5-3	0.0 ± 0.3	0.3 ± 0.3	1.7 ± 6.3	9.9 ± 6.4
Thomes Creek at Paskenta	13d	5-15	4.0 + 0.0	0.0 + 0.4	0.0 ± 6.2	0.0 +1+1
Yuba River at Marysville	21	5-9	0.0 + 0.2 0.3 + 0.4	0.0 + 0.0	14.8 ± 4.4	30.4 + 5.4
Yuba River near Smartville	213	5-1	0.0 +1+ 0.0	0.0 + 0.1	4.4.4.0.0	4.0 ± 4.3

TABLE D-8
RADIOASSAYS OF SURFACE WATER
Lahontan Region (No. 6)

_												
	Solid Beta	40.3 ± 5.4 1.0 ± 6.2	63.9 + 5.8	5.8 + 4.3	0.9 + 4.2	5.4 + 5.0	9.7 ± 6.2	22.2 + 4.5	17.5 ± 5.2	17.0 ± 5.3	51.7 ± 5.0	
curies per liter	Dissolved Beta	20.8 + 4.6	35.4 + 4.8	5.3 ± 4.3	3.8 + 4.3	1.8 + 4.2	6.1 +1+6.2	23.6 + 4.5	10.7 ± 4.5	22.0 ± 4.6	20.7 ± 4.5	
Micro-micro cu	Solid Alpha	0.7 + 0.3	0.5 +1 +1 +1 0.6	0.0 + 0.2	4.0.0 4.0.1	0.0 ± 0.1	4.0.4	4.0 +1+1 4.0 -2	0.0 + 1 + 0.1	0.0 + 0.0	0.0 +1+1	
	Dissolved Alpha	0.2 + 0.2 0.1 + 0.3	0.2 + 0.2 0.5 + 0.4	0.0 + 0.0	0.2 + 0.2 0.3 + 0.4	0.0 + 0.2	4.0 - 3 4.0 - 3	0.0 +1+1	4.0.2	0.3 + 0.3 0.4 + 0.3	0.0 +1+0.2	
1	Date	5-2 9-12	5-2 9-12	5-2	5-1 9-13	5-1	5-14	5-3	5-1	5-2	5-2	
Sto	20	115	115a	39	38	37	170	53	52	116e	116	
	Stution	Carson River, East Fork near Markleeville	Carson River, West Fork at Woodfords	Lake Tahoe at Bijou	Lake Tahoe at Tahoe City	Lake Tahoe at Tahoe Vista	Susan River at Susanville	Truckee River near Farad	Truckee River near Truckee	Walker River, East near Bridgeport	Walker River, West near Coleville	

TABLE D-9
ANALYSES OF ORGANIC CHEMICALS IN SUFFACE WATER*

(Recovered by Corbon Filer Techn que)

CRESTRAL WALEY RESTOR (06. 5)

ſ	-		%	1.3	7.6	5.0	4.5	2.7	2.0	3.00	6.4	5.4	8.00
		Loss	daa			-	3 8	0 1	010	440	00	00	010
		Н	-	98.5	4.36	98.0	95.5	97.6					
	.4	Totol	%		_		96		98.0	97.6	93.6	97.8	88.8 6.7.8
	Neutrois		qdd	1 15	7 133		5 27	0 17	2 17 72	727	2 67 69	17.7	23 23 23 23 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25
	n of N	Oxygenates	°°	92.0	84.7	93.6	92.5	89.7	88.2 85.7 96.2	91.4 85.8 91.7	83.0	90.8	91.1 882.5 80.7
	Separation of		qdd	25	21 2		27	25 25	17	321	202	137	828
	up Sep	Aromotics	°°	3.2	4.6	Ci.	1.5	8.6	400	5.2	5.3	3.0	
	Group	Aro	qaa	10			۰	-1-1-1	400	001	70	00	101
		photics	è.	3.5	3,1	Ci Ci	1.5	8.5	440	8.7	5.3	3.5	40.00
		Alip	quid	7 7	00	v o	0	~ ~	чоо	0 11 0	40	0 ~	~ ~ Q
		22	%	29.2	21.2	22.1	23.2	31.6	14.6 20.9 16.5	13.5	1.01 1.08	23.5	19.9
		Loss	gdd	183		66	39	9,8	222	10 10 13	23	® 8	55 55 55 55 55 55 55 55 55 55 55 55 55
			%	70.8	78.8	0.0	76.8	38.8	85.4 79.1 83.5	83.3 86.5 72.7	80.6	78.6	86.1 80.7
		Total	qdd	94		23	921	102	232	3 28	# 9 # 9	M CR	2,28
		ls down)	%	15.0	14.7	0 5	18.0	15.2	21.6	17.2 21.8 22.5	19.7	18.2	888
	obles.	Neutrals (see breakdaw	cdd	16 1		2 6	200	98	19 17 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18	223	22	77	821.8
	xiraci		, o / o	7-1	7.0	10.0	9.8	8.8	10.3	9.3	80.0	6.0	9.0
	Group Separation at Chloroform Extractables	Weak	gdd	00 00		7 5	77	107	P + 9	990	00	310	200
(q	Chlore		G	7.8		νω νω	15.1	10.4	8 8 8 8	11.7	11.8	10.1	0 m m
dd) uo	to no	Strong	gda	- 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		N 1-	20 12	22	946	3 2 5	22 27	78	0.46
er b	eporof			0.0		N	1.3	2.3	1.5	2.03	2.3 1	2.5	610
orts p	S dno.	Amines	è°	00		# CU	2	0.0	277	000	3 5	1 2	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Results in parts per billion(ppb	ō	-	qdd										
Resul		Water	%	34.5	*:	30.6	33.0	33.6	36.6	42.3 34.1 28.8	34.8	33.7	4.00 8.00 4.00 4.00 4.00 4.00 4.00 4.00
		\vdash	qdd	3,78		7 25	3 54	3 34	35 24 35 35	33.	92 92	3 57	99.3 33 33 33 33 33 33 33 33 33 33 33 33 3
		Ether	%	3.6		7.7	3.8	6.7	5.8 12.1 3.4	11.9	3.8	4.00	
			qda	.4 %		0 0	9	1 -	20 M	480	19	0.0	D I I
	Alcohol	Extractobles	%	47.9	9.49	65.9	62.0	62.7	70.7	66.7 75.4 75.5	39.2	75.5	66.7.2. 60.00
		Extro	qdd	878	191	162	568	182	163 91 217	212 212 158	68	104	214
	form	Extroctobles	%	52.1	35.4	34.5	38.0	37.3	29.1	33.3	60.8	24.5	9.0.03
	Chlor	Extro	Qdd	95	84	833	165	108	67 89	25 63	105	92	103
	-	100	,°										
	Tol	Extroct	qdd	209	653	245	433	290	230	235	333	163	217 275 275
					_	_							
		Complete	2	9-7-62	6-4-62	9-21-62	9-13-63	6-11-62	7-20-02 1-30-63 8-5-63	7-2-62 10-5-62 5-27-63	9-27-62	7-20-62	8-1-62 10-11-62 7-18-63
		Stotian		American River at Sacramento	Cache Creek near Lover Lake		Cache Creek at Highway 53	Clear Lake at Mce	Feather River above Verons	Putah Creek at Diversion to Putah South Canal	Reclamation District 1000 Drain at Second Bannon Slough	Sacramento River above Sacramento Slough	Sen Josqu'n Fiver at Mossadale Bridge
				Ame	Cac		Cac	G G	in.	2	8	S.	()

Sobrette 3

protest.

est fare

1200 (MI)

Spood CL.

Smatte Street.le No Fista Jaleton 3

Hillest

letted | letted | letter | letter | letter |

iest fer de tota

imposite
inter Si
inter Si
inter Si
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter
inter

1 1034

DESCRIPTION OF SALINITY OBSERVATION STATIONS

1962-63 Water Year

Station	Miles from Golden Gate	Ti Inte (b	rval	Location				
	(a)	Bours	Mia.					
				SAN FRANCISCO, SAN PABLO, AND SUISUN BAYS				
Sobrante Beach	20.5	2	50	South shore of San Pablo Bay from wharf approximately 1.5 miles upstream from Point Pinole.				
Crockett	27.7	3	30	West end of Carquinez Strait, south shore, 0.2 mile east of Carquinez Bridge on wharf of C and H Sugar Refinery Corporation.				
Benicia	32.5	3	50	East end of Carquinez Strait, north sbore, 1.1 miles west of Southern Pacific Company railroad bridge at Benicia Arsenal.				
Martinez	33.1	3	50	Sampled from Sbell Oil Company dock, about 0.6 mile downstream from Southern Pacific Company railroad bridge.				
West Suisun	37.0	4	10	West end of Suisun Bay, north shore, 2.5 miles northeast of Southern Pacific railroad bridge at service pier of U. S. Maritime Commission, Reserve Fleet mooring area.				
Innisfail Ferry	47.3	4	50	Montezuma Slough, about one mile east of junction with Cutoff Slough near north end of Grizzly Island.				
Port Chicago	41.0	4	20	South Shore of Suisun Bay at U. S. Naval assumition loading wharf below Fort Chicago.				
Spoogbill Creek	48.9	5	05	At Sacramento Northern Railroad crossing.				
Pittsburg	48.0	5	00	East end of Suisun Bay, south shore, at Pittsburg Yacht Rarbor.				
				SAGRAMENTO RIVER DELTA				
Collinsville	50.8	5	25	Sacramento River, north bank at junctice with San Joaquin River.				
Emmaton	57.6	5	45	Sacramento River, south bank, 5.9 miles downstream from Rio Vista.				
Threemile Slough Bridge	60.0	5	55	At junction of slough and Sacramento River.				
Rio Vista Bridge	63.5	6	05	At highway bridge near northerly limits of Rio Vista.				
Isleton Bridge	68.7	6	30	Sacramento River, one mile upstream from Isleton.				
				SAN JOAQUIN RIVER DELTA				
Antioch	54.9	5	55	San Joaquin River at City Water Works pumping plant.				
Antioch Bridge	58.2	6	10	South sbore San Joaquin River at Antioch Bridge.				
Jersey Island	60.9	6	20	San Joaquio River, left bank approximately 1.5 miles below mouth of False River.				
Threemile Slough	64.2	6	30	Threemile Slough, west bank, of junction of slough with the San Joaquin River.				
Oulton Point	67.2	6	40	San Joaquin River, right bank, three miles upstream from junction of Threemile Slough.				
Webb Ferry	68.0	6	40	False River at junction with Fisherman's Cut.				
San Andreas Landing	70.3	6	55	San Joaquin River, right bank, one mile below the mouth of the Mokelumne River.				
Opposite Central Landing	72.0	7	00	Mokelumne River on Andrus Island directly opposite Central Landing on Bouldin Island.				
Dutch Slough	73.0	7	05	At Bethel Island Bridge.				
East Contra Costa Irrigation District	86.7	8	20	Indian Slough at East Contra Costa Irrigation District pumping plant.				
Clifton Court Ferry	94.2	9	10	Old River just below junction with Grant Line Canal.				
Mossdale Bridge	108.5	10	50	San Joaquin River at U. S. 50 Highway crossing about three miles southwest of Lathrop.				
Vernalis	127.0	11	00	San Joaquin River at Durham Ferry Bridge above tidal influence.				

a Mileage measured to station along main channel. For stations off the main channel, the mileage shown is the same distance along the main channel to a point whereon the time of the occurrence of the tidal phase is the same as that of the observation station.
b Time Interval between high tide at Colden Gate and time for taking samples at station.

modett September 1884 Murtice: Vest Sui

[misfail pet (3)

Schricte

Spoonbil Pistabur

Smaloo Sees. Ria Vist

Sillar

Antineb Antioch Jersey : Trem! Oulton :

weed file San And Typosite Dotat S Bust to lifton Mossial

* Oceani * Oceani * Stat * For b Rele : Fele

MAXIMUM OBSERVED SALINITY AT BAY AND DELTA STATIONS

In parts of chloride per million parts of water*

Station (a)						Water	Year					
	1931	1938	1939	1944	1952	1955	1956	1958	1959	1961	1962	1963
Sacramento-San Joaquin System Unimpaired Runoff in percent of average (d)	34	188	49	62	168	63	175	166	66	61		
				San	Francis	co, San	Pablo and	Suisun	Bays			
Sobrante Beach**					14200	19000	16200	13800	17200	15000	15600	13300
Crockett					13200	16600	15300	11900	15000	19900	13900	13100
Benicia**				13900	10400	15100	12300	12100	19200	14000	12300	9780
Martinez	16900	11600	16400		8900	11900	11900	7150	10200	11600	12700	11500
West Suisun**					7900	12600	11200	7520	13200	13200	11100	8280
Innisfail Ferry**	14000	3300	13600	7900	4200	5780	5200	3040	9640	13900	5690	2890
Port Chicago					6900	12500	9750	5830	15640	11900	9370	9200
Spoonbill Creek	13900	2560	11800	7300	2800	6400	4040	930	6270	5900	3540	2940
Pittsburg					1200	7800	3440	1200	5110	3920	3980	1350
	-				Sa	cramento	River De	lta				
	12600	860			=0=	-00-	2280		1 -1			0 -
Collinsville	15900	860	10400	4700	783	3880		550	5430	4300	2430	1980
Emmaton	0000	1				1080	158	29	2600	2070	841	382
Threemile Slough Bridge	8600		5900	1610	175	635	56	18	1480	633	232	134
Rio Vista Bridge	7400		4050	550	175	158	21	17	219	69	52	38
Isleton Bridge	6350		2500	50	125	23	17	14	20	18	18	14
					San	Joaquin	River De	lta				
Antioch	12400	510	9200	4000	354	3320	1270	184	3410	2930	1770	1040
Antioch Bridge						2360	160	122	2570	1360	479	317
Jersey Island						1130	152	52	1220		84	136
Threemile Slough						428	82	45	1900	489	130	56
Oulton Point**						376	105	44	567	596	150	69
Webb Ferry						331	79					98
San Andreas Landing						98	66	46	248	345	57	41
Opposite Central Landing**	4250	100	1380	200	250	36	96	17	46	34	27	20
Dutch Slough	5100	110	2250	690	88	454	107	110	1044	825	192	98
East Contra Costa Irrigation District**			320	140	152	196	173	333	356	278	222	167
Clifton Court Ferry**	1300		190		112	146	146	126	211	191	246	153
Mossdale Bridge	120	120	160	130	122	224	206	219	261	346	308	196
Vernalis (e)**					121	231	202	146	297	508	309	201

^{*} Ocean water contains approximately 18,200 parts per million. ** Station discontinued July, 1963.

a For location see Plate.
b Releases of stored water from Shasta Lake commenced in 1944.
c Releases of stored water from Folsom Reservoir commenced in 1956.

d Average taken as mean annual unimpaired flow at foothill stations of major tributaries for 50-year period October, 1907 through September, 1957. e Station located above tidal action.

Solve Solve

Section Sectio

ention annual service and a se

Socrept Procest Seniols Service ent Se Immobil Service Spoored Particol

action action for the control of the

Brates Breez, Ro Fis Mister

SALINITY OBSERVATIONS AT BAY AND DELTA STATIONS* In parts of chloride per million parts of water

Contra				October	1962			
Station	2	6	10	14	18	22	26	30
Sobrante Beach Crockett Benicia Martinez Weat Suisun Innisfall Ferry Port Chicago Spoombill Creek Pittaburg	13300 11400 7820 89000 7820 2740 6460 1010 492	a12700 10700 9180 a8470 ba8280 a2890 6130 a1490	San Fran a14200 e11500 e9780 e9770 7080 d7830 a1250 a642	11900 9910 7920 a8870 2080	nlo, and Suist 2640 944 1320 755 al510 566 a212 al42	4530 4530 3580 ae944 755 85 61	7520 4760 3970 2910 781 969 71	8680 6230 5190 a3970 2470
Collinsville Pranton Thresalle Slough Br. Rio Vista Bridge Isleton Bridge	a426 a123 21 a9 8	ad447 n53 8 7	m382 m150 19 8	247 40 15 12	8 8 8	13 13 11 9	40 11 13 16 12	31 15 a1 0 13 7
Antioch Antioch Bridge Jersey Island Threemile Slough Oulton Point San Andress Ldg. Opp. Central Ldg. Dutch Slough E.C.C.I.D. Clifton Court Ferry Mossdale Bridge Vermalis (g)	m246 m71 78 26 m27 18 m12 m66 m91 m53 m140 bd157	a200 58 al-7 a25 20 a5l- a86 a55 a1l-0 1l-5	n708 a67 a58 a29 n34 a19 a14 n50 86 54 190	San Joaquin 311 78 64 28 69 18 12 450 59 453 a137 123	River Delta #75 51 #30 #18 20 #16 #10 #45 #90 #97 #123 113	58 45 26 19 19 11 43 104 113 170 a151	30 37 26 18 16 18 adhl1 m43 all3 all3 al77	24 31 32 818 17 17 17 31 38 8106 8117 8126 129
Station	2	6	10	November	1962	22	26	30
Sobrante Beach Crockett Benicia Martinez West Suisun Inniefail Ferry Fort Chicago Spoonbill Creek Pittsburg	8600 4200 7500 1730 843 1470 a 56	9020 a7190 4630 5820 2120 935 65 27	San Fra 11000 9770 5960 a6980 135 bd61	10400 8540 7340 7390 4400 43170 260 136	aplo, and Sui: appoor 7130 4050 5710 1390 1080	13000 9220 8100 8960 5180 1040 4360 145 de63	11700 10000 4920 9250 6090 357 314	10200 7670 5200 8290 4000 1240 2640 280 81
Collinsville Emmaton Threemile Slough Br. Rio Vista Bridge Isleton Bridge	23 bd15 12 12 7	21 16 10 10 8	27 18 12 9	Sacramento 1 a 26 28 12 15 9	26 20 12 9	25 17 11 10 9	48 19 13 12 7	a41 a18 11 9
Antioch Antioch Bridge Jersey Island Threemile Slough Oulton Point San Andreas Lig. Opp. Central Lig. Dutch Slough E.C.C.I.D. Clifton Court Ferry Mossdale Bridge Vernalis (g)	a25 34 22 a19 20 a21 a10 n41 a115	24 34 22 19 20 40 120 128 138 130	44 a29 22 18 cd18 18 a9 42 a115 a132 a125	52 35 a22 a17 18 89 a43 a134 a128	River Delta 39 30 a22 20 23 13 41 142 136 120 117	42 30 22 20 5d21 19 43 139 129 120	61 31 22 18 al9 20 a9 42 al52 a128 a94 90	46 29 34 d18 a18 19 a8 a46 a153 a118 a69

[•] Samples taken at four-day intervals approximately one and one-half hours after high high tide.

a Taken after low high tide.

Taken two days later.

b Taken on preceding day.

c Taken on preceding day.

f Taken two days earlier.

b Taken two days earlier.

h Taken two days earlier.

SALINITY OBSERVATIONS AT BAY AND DELTA STATIONS. In parts of chloride per million parts of water

Solvante Crocketti Senicia euroinea eest Sona Sent Chin Sponthill Prinstrus

Collinst Sentor America Ho Fist Inletor

Schrent Droset Besicle Bertine eest Sir Denisfe Ren de Sponni Pottsbu

Salles Senten Molisi Saleton

letter letter freeze filter filter freeze fr

				Decembe	r 1962					
Station	2	6	10	14	18	22	26	30		
Sohrunte Beach Crockett Benicia Martinez West Suisun Innisfail Ferry Port Chicago	9940 7330 4510 6860 2320	9890 7040 5070 7830	San Frai 10200 8580 5130 7710 42630	10200 7000 5460 5980 43080 728	8140 7130 4740 5070 2410 1010	8790 5900 6520 1130	7360 5670 3280 6360 1390	8350 5590 3080 810 713		
Spoonbill Creek Pittsburg	171	71 34	38	72 29	46 d27	23	30 24			
Collinsville Emmaton Threemile Slough Br. Rio Vista Bridge Isleton Bridge	37 15 12 8 8	20 10 10 7	15 10 11 5	alO 10 7 6	12 9 11 7 3	15 8 7 11 5	11 10 13 8 6	12 11 10 7 7		
				San Joaquin	River Delta					
Antioch Bridge Jersey Island Threemile Slough Oulton Point San Andress Idg. Opp. Central Idg. Dutch Slough E.C.C.I.D. Clifton Court Ferry Nomidale Bridge Vermalia (8)	a32 32 a22 a9 a47 a167 a99 a74 109	27 36 a23 20 18 20 6 48 164 90 80 68	21 31 22 17 15 18 50 a148 a88 a72 d64	a28 a36 16 41 a53 a140 a80 a92 de69	30 40 24 25 26 21 56 133 88 100 100	28 42 30 21 16 6 65 128 98 78 59	22 34 a28 21 22 8 62 a129 a30 a32 66	a30 a39 24 25 11 a65 a132 a87 a92 75		
		January 1963								
Station	2	6	10	14	18	22	26	30		
Sobrante Beach Crockett Benicia Martines West Suisun Innisfail Ferry Port Chicago Spoombill Creek Pittaburg	8230 5780 2810 5130 1160	9060 47480 5400 4470 2530 492 2330 32 bd27	San Fra 9120 7340 14470 7110 2060 62	8680 5340 2540 a 5670 2140 641 443 42	8250 7290 6070 7360 ae1840 4340 57	10600 7580 9180 856 4240 376 496	11000 6380 8020 4030 4070 431	11100 9250 bd6090 a8310 3790 1200 4070 444 146		
				Sacramento	River Delta					
Collinsville Emmaton Threemile Slough Br. Rio Vista Bridge Isleton Bridge	12 11 8 8 5	22 1 ⁴ 7 8 5	1 ⁴ 17 9 10 9	24 14 9 9	20 17 15 7	142 18 13 9 8	52 26 16 16 7	106 bd31 14 13 5		
				San Joaquin	River Delta					
Antioch Antioch Bridge Jersey Island Threemile Slough Oulton Point San Andreas Idg. Opp. Central Idg. Dutch Slough E.C.C.I.D. Clifton Court Ferry Mosdadle Bridge Vernalis (g)	27 43 25 8 67 135 96 100 110	27 46 29 28 21 29 68 130 107 a94 100	33 47 33 25 28 a8 64 a128 a99 a106 d96	36 47 37 30 29 31 9 62 128	35 45 36 27 29 10 7 463 127 127 133	43 42 32 26 bd23 18 10 61 132 132 a146 156	73 50 35 26 19 23 a9 64 127 a136 a155	91 47 46 21 10 49 132 139 179		

^{*} Samples taken at four-day intervals approximately one and one-half hours after high high tide.

a Taken after low high tide.

Taken two days later.

a Take on preceding day.

b Taken two days later.

a Taken on preceding day.

c Taken two days earlier.

c Taken two days earlier.

SALINITY OBSERVATIONS AT BAY AND DELTA STATIONS*

In parts of chloride per million parts of water

	in parts of chloride per sillion parts of vater February 1963								
Station	2	6	10	14	18	22	26		
Sobrante Beach Crockett Benicia Martinez West Suisun Innisfail Ferry Fort Chicago Spoonbill Creek Pittsburg	4700 3550 1910 2850 496 1050 bd37 173	1440 763 54 38 142 8 14	San Fra 4690 2400 5114 935 76 226 35 14	2200 1670 1060 59 19	ablo, and Sui 3470 1970 250 386 255 20 bd25	4490 3970 2800 492 337 e371 31 32	a6170 3370 810 a1870 178 a450 33 a29 ab32		
Collinsville Dumaton Threemile Slough Br. Rio Vista Bridge Isleton Bridge	d16 15 3 12 1	9 4 5 4 3	12 7 6 6	22 abdll 13 10 6	River Delta 14 13 6 4	18 11 10 11 8	a48 14 11 12 5		
Antioch Antioch Bridge Jeresy Island Threemile Slough Oulton Point San Andress Lig. Opp. Central Lig. Dutch Slough E.CL. Clifton Court Ferry Mossdale Bridge Vermalis (g)	37 47 49 24 26 22 8 49 124 153 122 46	30 47 30 21 29 19 8 79 148 a23 a13	66 37 25 33 22 a8 98 abd99 a32 a30 32	San Joaquin 48 70 40 28 41 32 9 86 118 24 23 21	River Delta 40 77 33 24 29 29 8 74 98 27 24 20	35 58 35 19 24 22 14 868 8108 831 842	a 34 a 61 a 30 25 23 10 64 118 44 52		
Station					n 1963				
	2	6	10	14	18	22	26	30	
Sobrante Beach Crockett Benicia Martinez West Suisun Inniefail Ferry Port Chicago Spoobbill Creek Pittsburg	6360 43860 3030 1530 479 466 29	8060 6700 6890 1616 31 24	San Fra 9090 5420 1690 32 30	all200 7280 3750 5630 2800 all76 2620 a34 abd32	7860 5730 3650 6540 aell070 524 aell40 46	12300 11200 6700 9610 510 529 284	ad11400 10100 7090 a5730 2600 a752 2820 a246 a95	5340 5920 3400 3980 849 4752 680 49	
•				Sacramento	River Delta				
Collineville Emmaton Threemile Slough Br. Rio Vista Bridge Isleton Bridge	15 9 7 4	17 14 11 14 6	27 abd16 14 11	25 19 16 1 ⁴ 8	23 18 14 14 12	30 21 15 16 9	a30 a23 14 11 7	23 14 11 7 2	
				San Joaquin	River Delta				
Antioch Antioch Bridge Jermey Island Threemile Slough Oulton Point San Andreas Ldg. Opp. Central Ldg. Dutch Slough E.C.C.I.D. Clifton Court Ferry Mosedale Bridge Vermalis (g)	25 55 31 24 bd29 24 20 43 131 62 62 50	31 38 31 25 27 19 10 52 133 a71 a109 114	34 a50 30 a22 20 a12 26 a121 a77 a132 136	a32 a45 29 16 19 12 53 92 82 133 126	30 40 28 22 bd24 16 12 49 61 77 143 114	58 49 27 21 17 10 48 67 a196 201	a49 a42 a27 16 17 12 11 51 73 73 73 129	36 42 27 21 16 8 54 133 56 19	

[•] Samples taken at four-day intervals approximately one and one-half hours after bigh high tide.
a Taken after low high tide.
b Taken too days later.
c Taken too preceding day.
c Taken too preceding day.
c Taken too preceding day.
c Taken too days earlier.
c Taken too days earlier.
c Taken too days earlier.

SALINITY OBSERVATIONS AT BAY AND DELTA STATIONS. In parts of chloride per million parts of water

TOTAL STATE OF THE

Maria Arres Arres Arriva

Manager Property of the Party o

Temp.

Ports Forts Sports Street

HERE WELL

				Apri	1 1963						
Station	2	6	10	14	18	22	26	30			
Sobrante Beach Crockett Benicia	5150 1460 291	adf8450 4180 2620	a3790 2230 158	a2 010 874 85	ablo, and Sul a2670 1070 b655	a2960 1140 316	a2770 1260	3610 807 277			
Wartinez West Suisun Innisfail Perry Port Chicago Spoombill Greek Pittsburg	583 78 607 24 bd21	2720 121 de 308 a19	a3570 46 a170 d20 a12	801 48 ad121	a22 de29 b17 a7 a7	36 a86 a12 abd23	de866 30 a109 d56 a10 a21	221 ae70 ae61 8 16			
				Sacramento	River Delta						
Collinsville Emmaton Threemile Slough Br. Rio Vista Bridge Isleton Bridge	10 6 10 6 5	al2 a7 8 11	a16 a2 a3 5	bd10 3 5 2	a.6 a.u b6 b3	a3 3 4 3	7 9 45 4 2	10 6 5 4 5			
				San Josquin	River Delta						
Antioch Bridge Jersey Telland Threemile Slough Oulton Point San Andreas Ldg. Opp. Central Ldg.	23 44 16 26 6	a43 a25 a25 a26 a21	a31 42 a29 a15	24 36 40 16 5	a27 a42 a30 a7 a17 a4	a25 a89 a26 a9 14 a12 a5	15 33 a23 13 11	20 32 22 13 12			
Dutch Slough S.C.C.I.D. Clifton Court Ferry Mossdale Bridge Vernalis (g)	48 bd133 32 22 22	54 131 39 36 44	67 all ⁴ 36 22 17	65 61 17 17 22	a56 a56 a22 a27 27	a43 66 27 17 17	42 35 22 15 15	40 48 21 23 24			
Station	May 1963										
	2	6	10	14	18	22	26	30			
			San Fra	l mcisco, San P I	ablo, and Sui	un Bays					
Sobrante Beach Crockett Benicia Martinez West Sulsun Innisfail Perry Port Chicago Spoonbill Creek Pittaburg	3270 2670 1090 1460 129 bd33 a15 a18	a6040 2820 a1390 317 a134 d24 a12	a7330 3790 2180 a2030 163 40 a14 a15	a5150 2380 792 1140 287 148 16 15	a8910 5540 3910 5150 2250 a121 bd1110 a14 a13	a7920 5150 4060 4460 624 a12 a13	a7520 3860 2570 3960 198 44 12 a15	m3510 e3960 e2670 e2970 e366			
				Sacramento	River Delta						
Collinsville Emmaton Threemile Slough Br. Rio Vista Bridge Isleton Bridge	a8 a8 a8 7 2	ෂයි ෂයි ෂයි 15 3	all 5 7 5	10 6 6 5 6	a17 a6 9	a16 a7 a6 7 6	12 a9 d7 12	a8 89 8			
				San Joaquin	River Delta						
Antioch Antioch Bridge Jersey Ieland Threenile Slough Oulton Point San Andreas Ids. Opp. Central Ids. Dutch Slough E.C.C.I.D. Clifton Court Perry Mosdale Bridge Vermalis (8)	a20 a37 a16 a18 a5 a42 a70 a32 a26 36	a21 a34 a19 a13 14 a11 a7 34 a66 29 26	15 a37 a15 ad10 12 10 7 33 69 28 29 30	15 33 15 12 13 6 32 55 12 12 12	a16 a27 a18 a16 abd14 a9 acd6 a32 a48 a25 a34	al7 a29 al4 al1 l1 a9 32 77 28 17 d12	14 27 14 12 12 12 21 50 15 13	a15 a22 a18 a12 a14 a8 a6 a26 40 a14 a10			

[•] Samples taken at four-day intervals approximately one and one-half hours after high high tide.
a Taken after lov high tide.
5 Taken two days later.
c Taken two days later.
c Taken to preceding day.
5 Station located above tidal action.

SALINITY OBSERVATIONS AT BAY AND DELTA STATIONS* Is parts of chloride per million parts of water

		parts of chl		June				
Station	2	6	10	14	18	22	26	30
Sobrante Beach Crockett Becicia Martinez West Suisun Innisfail Ferry Port Chicago Spoombill Creek Pitteburg	a5440 4750 3370 1980 1240 bd495 a13	a9110 5640 4750 5350 2480	San Fra a10500 6730 5540 5940 4010 2600 d19	al2100 e6830 e4750 e4950 e2970 e2970	all500 9600 7330 6140 abd109 3910 ad109 a58	al0300 8510 6930 6530 5440	9920 7720 3370 6930 3860 96 abd62	all700 e5540 e7030 e3860 al66
Collinsville Emmaton Threemile Slough Br. Rio Vista Bridge Isleton Bridge	al0 a8 al0 11 5	8.9 8.3 9	13 adl ¹ 10 12 8	Sacrameoto al5 al1 al1 al1 12	##1 ##2 ##2 ##2 ##2 ##2 ##2 ##2 ##2 ##2	al ⁴ al7 al ⁴ ll	e25 e13 11 b10	al3 al4 11 10
Antioch Antioch Bridge Jersey Island Threemile Slough Oulton Point San Andreas Lig. Opp. Central Lig. Dutch Slough E.C.C.I.D. Clifton Court Ferry Mossdale Bridge Vermalis (g)	al6 e25 al4 al3 al2 a7 31 al5 al6	al7 a26 a15 al2 l2 al1 6 21 18 18 19 20	a16 a26 a15 12 11 21 22 19 31	San Joaquin 19 a24 a15 a11 a18 a24 a26 a42 44	a20 a23 a17 a13 a13 a11 a33 a28 34	a277 a14 a13 12 12 10 19 32	28 27 a16 a12 a15 a10 a21 a36 a45	831 833 813 89 821 32 830 866 57
	July 1963							
Statloo		1		July	1963			
Statioo	2	6	10	July	1963	22	26	30
Statioo Crockett Martinez Port Chicago Spombill Creek Pittsburg	9180 8700 a 84	6 8920 ad6450 5900 a409 cd426			18		26 10300 a8750 1270	30 e11300 e9780 a4850 a1920 aed1170
Crockett Martinez Port Chicago Spombill Crek	9180 8700	8920 ad6450 5900 a409	San Fra 8820 a8370 4470	14 ncisco, San Pa e10400 aed6250 aed4490 e1100 ab4353	18 ablo, and Suin 11700 9510 7330	12200 9530 7720 abd1720	10300 a8750	ell300 e9780 a4850 a1920
Crockett Martinez Port Chicago Spombill Crek	9180 8700	8920 ad6450 5900 a409	San Fra 8820 a8370 4470	14 ncisco, San Pa e10400 aed6250 aed4490 e1100 ab4353	18 ablo, and Sui: 11700 9510 7330 d882	12200 9530 7720 abd1720	10300 a8750	ell300 e9780 a4850 a1920
Crockett Martinez Port Chicago Spombill Creek Pittsburg Collinsville Emmaton Threemile Slough Br. Rio Vista Bridge	9180 8700 a84 a56 abd20 a13 12	8920 ad6450 5900 ai09 cd426 a426 a28 bd20 12	San Pra 8820 a3370 4470 a586	14 ncisco, San Pi el0400 acd6250 acd4450 el100 abd353 Sacramento a311 a20 a18 14	18 11700 9510 7330 4882 River Delta a445 a43 a29 18	12200 9530 77720 abd1720 d617	10300 a8750 1270 a728 a133 a30 16	e11300 e9780 a4850 a1920 aed1170 a794 a66 a34 14
Crockett Martinez Port Chicago Spombill Creek Pittsburg Collinsville Emmaton Threemile Slough Br. Rio Vitat Bridge	9180 8700 a84 a56 abd20 a13 12	8920 ad6450 5900 ai09 cd426 a426 a28 bd20 12	San Pra 8820 a3370 4470 a586	14 ncisco, San Pi el0400 acd6250 acd4450 el100 abd353 Sacramento a311 a20 a18 14	18 ablo, and Suit 11700 9510 7330 d882 River Delta a445 a445 a29 18	12200 9530 77720 abd1720 d617	10300 a8750 1270 a728 a133 a30 16	e11300 e9780 a4850 a1920 aed1170 a794 a66 a34 14

Samples taken at four-day intervals approximately one and one-half hours after high high tide.
 Taken after low high tide.
 Taken two days later.
 Taken two days later.
 Taken two preceding day.
 Station located above tidal action.

SALINITY OBSERVATIONS AT BAY AND DELTA STATIONS* In parts of chloride per million parts of water

Station				Augus	t 1963					
Station	2	6	10	14	18	22	26	30		
Crockett Martinez Port Chicago Spoonbill Creek Pittaburg	12900 10600 a5640 a2450	13100 a8000 7830 a2640	San Fra 12500 11500 6670 a2350	e12400 a8180 e8120 a2500 ad906	abln, and Sui: 13200 11400 8780 abd1130	sun Bays 12400 9880 8530 2520	10900 9710 7190 2250 a1350	e12100 e11400 9200 a2940		
Collinsville Emmaton Threemile Slough Br. Rio Vista Bridge Isleton Bridge	a1260 a120 21 11	287 a90 38 9	8204 864 24 9	Sacramento a165 a58 37 11	al720 a286 d134 21	1980 335 81 42 10	a1030 a175 a63 12	a1370 a172 abd81 15 10		
Antioch Antioch Bridge Jersey Island Threemile Slough Webb Ferry San Andreas Idg. Dutch Slough	a494 ad168 a101 a16 a65	967 a250 a103 a56 a73 a15 67	736 a212 a52 a16 a473	San Joaquic a ⁴ 0 a16	a659 a317 a56 a98	1040 a249 a136 a51 31 a19 86	a426 a226 a89 a58 a16 a73	a637 a235 a82 a53 a31 a22 a80		
Station	September 1963									
Station	2	6	10	14	18	22	26	30		
Crockett Martinez Port Chicago Spoodbill Creek Pittaburg	12600 a2350	12400 10900 5490 2300	San Fra 11800 aB240 6860 1690	11000 10800 6280	10800 9310 5290 882 a333	9800 a8820 3330 417	10700 3820 a368 a137	d9900 5490 a735 abd167		
				Sacramento	River Delta					
Collinsville Emmaton Threemile Slough Br. Rio Vista Bridge Isleton Bridge	a1030 bd382 bd54 29 13	a1400 216 58 26 12	a515 a59 a35 19 14	a578 abd35 a26 12 14	a98 47 a19 13	172 30 15 12 13	a44 a22 abd15 b7 b10	a220 a26 a11 8 8		
				San Joaquic	River Delta					
Antioch Antioch Bridge Jersey Island Threemile Slough Webb Ferry San Andreas Ldg. Dutch Slough	a274 a74 a36 a67 a17 a72	784 176 96 37 a75 a18 a74	a314 51 a20 a20 a16 a63	8250 a83 a46 a20 a35 a16 a55	a157 a35 a22 a24 16 50	88 42 a20 a16 a14 a35	a39 a33 a20 a16 a17 a15 a32	a49 a28 a25 a15 a14 a29		

^{*} Samples taken at four-day intervals approximately one and one-half hours after bigh high tide.

a Taken of ter low high tide.

b Taken on following day.

b Taken two days later.

c Taken on preceding day.

f Taken two days earlier.

 $\begin{array}{ccc} & \text{Appendix E} \\ & \text{GROUND WATER QUALITY} \end{array}$

INTROL

E-1 A

E-3 3

E-1 E-2

T_2

TABLE OF CONTENTS

	Page
INTRODUCTION	151
High Valley	154
Burns Valley	155
TABLES	
E-1 ANALYSES OF GROUND WATER, CENTRAL VALLEY REGION (No. 5)	157
E-2 ANALYSES OF GROUND WATER, LAHONTAN REGION (No. 6)	183
E-3 RADIOASSAY OF GROUND WATER, CENTRAL VALLEY REGION (No. 5)	191
PLATES (Bound at end of Appendix E)	
E-1 HIGH VALLEY GROUND WATER BASIN	
E-2 BURNS VALLEY GROUND WATER BASIN	
E-3 GROUND WATER BASINS IN NORTHEASTERN CALIFORNIA	

quali

progr

perf

Cont

sample by t

samç labo

trei

prac

are

Cher

the

ana

GROUND WATER QUALITY

Data presented in this appendix are measured values of selected quality characteristics of ground waters in Northeastern California, as shown on Figure 1 "Area Orientation Map". The ground water quality data program is based on systematic sampling of a predetermined network and is reported annually by water year. The ground water quality data program is performed in cooperation with other state, local, and federal agencies.

All data presented in this volume are within Water Pollution
Control Board Regions Nos. 5 and 6. The ground water quality data are
grouped according to the Water Pollution Control Board Region and wells
sampled by the program are arranged by basin number and tabulated in sequence
by township, range, and section.

Water quality data programs consist of selecting locations to be sampled, collection of samples by department personnel or cooperators, laboratory analysis by an assigned agency, examination of the data to note trends or significant changes, and publication of the data and findings.

Field sampling is performed in accordance with accepted engineering practice. Comments on local conditions are noted in the field books but are not included in the tabulation.

Laboratory analysis of ground water was performed in the Department's Chemical Laboratory at Bryte and, by contract with Lein Laboratory, both in accordance with "Standard Methods for the Examination of Water and Waste Water", Eleventh Edition. Heavy metal analysis was by "wet" analysis at the Bryte Laboratory. Tabulated values for dissolved minerals are the analytical quantity reported in parts per million (ppm) and a computed value for equivalents per million(epm). Electrical conductivity is reported

as micromhos per centimeter at 25°C. Water temperature is reported in degrees Fahrenheit and is measured in the field at time of sampling.

Analyses for radioactivity were made by the California Disaster Office Laboratory in Sacramento and results are expressed in terms of activity, measured in micro-micro curies per liter which is equivalent to pico-curies per liter. The most probable error is reported along with the measured value.

Results of bacterial, radiological, and organic determinations presented in this bulletin should be considered qualitative and undue emphasis should not be given to quantitative values.

Quality information for most wells in the monitoring program is augmented by well logs and well construction information.

Well Numbering System

The state well numbering system used in this report is based on township, range, and section subdivision of the Public Land Survey. It is the system used in all ground water investigations and for numbering all wells for which data are published or filed by the Department of water Resource In this report the number of a well, assigned in accordance with this system, is referred to as the State Well Number.

Under the system, each section is divided into 40-acre tracts lettered as follows:

Note that I and O are omitted in the grid above.

ERRATA SHEET

BULLETIN NO. 130-63, VOLUME II, APPENDIXES D AND E

1. The following diagram should have appeared in the final paragraph on page 152:

D	С	В	A
E	F	G	Н
М	L	К	J
N	Р	Q	R

2. The symbol for "MONITORED WELL" was omitted from the legends of Plates E-1 and E-2. This symbol is a solid red circle corresponding to those shown as 23K1, 24B2, and 24L1 in Plate E-1 and as 15N1, 22B2, 21B1, and 2U11 on Plate E-2.

ces.

Arms

.OWI

37,0

Wells are numbered within each 40-acre tract according to the chronological sequence in which they have been assigned State Well Numbers. For example, a well which has the number 16N/3E-17Kl, M would be in Township 16 North, Range 3 East, Section 17, Mount Diablo Base and Meridian, and would be further designated as the first well assigned a State Well Number in tract K. Well numbers are referenced to the Humboldt Base and Meridian (H), the Mount Diablo Base and Meridian (M), or the San Bernardino Base and Meridian (S).

Acknowledgments

hose

The extensive coverage of the Ground Water Quality Monitoring

Program, in Northeastern California, is made possible through the cooperation

of federal, state, and local agencies. The Department wishes to express

appreciation for the valuable assistance and cooperation received from the

following local agencies in addition to the federal and state agencies.

County Agencies

Butte County Farm Advisor
Colusa County Farm Advisor
Glenn County Farm Advisor
Placer County Farm Advisor
Sacramento County Farm Advisor
Shasta County Department of Water
Resources
Sutter County Farm Advisor
Tehama County Farm Advisor
Yolo County Farm Advisor
Yuba County Farm Advisor

HIGH VALLEY (5-16)

High Valley is a nearly closed basin located approximately one mile north of the town of Clearlake Oaks in Lake County. The valley is about three miles in length and averages one mile in width.

- 0.49

det

250

100

120

Bit

01

...

88

Monitoring Program

The monitoring program was initiated in 1963 to determine the quality of ground water in the area and to detect significant changes. Three samples were collected in June. Plate E shows High Valley ground water basin and the location of sample wells.

Ground later Development

An examination of well logs indicate the valley floor consists of clay, silt, sand, and gravel which appears to be an accumulation of material eroded from the surrounding hills. Fine grained particles of clay and silt dominate the center portion of the valley while much of the gravel is located near the periphery of the basin.

Evaluation of Ground Water

Ground water has been developed to satisfy the domestic needs of the few inhabitants and for limited agricultural use. The desire for more irrigation water has brought about the construction of deeper wells; however, water quality problems have caused abandonment of some of these wells due to highly mineralized waters.

Analyses of samples indicate the waters are magnesium bicarbonate in type with the deeper wells displaying higher mineral content. Well number 14N/8n-24P2, an irrigation well, contained 2.1 parts per million boron which is a class 3 water for agricultural use (injurious to unsatisfactory for most crops).

BURNS VALLEY (5-17)

Burns Valley is an elongated alluvial area located on the northeast shore of southern Clear Lake and encompasses approximately three square miles. The community of Clearlake Highlands occupies a sizeable portion of the valley.

Monitoring Program

The collection of ground water samples was initiated in 1963 to determine quality of ground water in the area and to detect significant changes. Four samples were collected in June. Plate E-2 shows Burns Valley ground water basin and the location of sample wells.

Ground Water Development

Well logs indicate the valley floor is composed of a surface alluvium of recent stream deposits which cover an older more indurated formation. These two strata appear to override sandstone and shales. Most water appears to be drawn from the surface alluvium.

Evaluation of Ground Water

Ground water has not been subject to intensive development as Clearlake Highlands has a water company which uses lake water as a domestic supply and the agricultural requirements within this valley are not great.

Analyses of samples indicated sodium or a combination of calcium and magnesium to be the dominant cation while bicarbonate was the dominant anion. One shallow well (25 feet) was observed to have 333 parts per million hardness and 1.3 parts per million boron; however, analyses of other samples were within the limits for the existing uses.

1 ANALYSES OF GROUND WATER

ANALYSES OF GROUND WATER TABLE E-1

Owner and Owne	9-11-63	Te and Te	once (micro-	£	Enoing €			as-Carb	Bing		-									-	
	9-11-63		11 25° C)		(00)	E(OW)	(NO)	(K) (CO ₃)	banate (HCO ₃)	10 Sul 10 Sol 13) (SO ₄)	8 5 G	- Ni- trate (NO ₃)	Flug- ride (F)	Boran (B)	Silica (SiO ₂)	Silica (SiO ₂) Other canstituents ^d	edis - pevios perios in ppm	pos mm	as CaCO ₃ Total N.C.		Analyzed by c
	9-11-63					61	CENTRAL VA	VALLEY R	REG ON (No	[o. 5]											
	9-11-63						GOOSE	LAKE VAJ	VALLEY (5-1	্বা											
	9-11-63	1	175	7.9	0.55	2.8 0.23 25 1.10	1.9	0.0	1.68	3.8	3.5	0.03	3 0.1	0.1	Z]		128	57	39	0	目
0,		:	380	4.8	39 16.	16 23 1.33 1.00	00 0.03	3 3	3.52	5.8	0.0	0.27	7 0.01	0.1	077		272	23	163	0	13
	9-11-63	!	590	 	15 1.	1.3 56	3.9	20 0.0	160	200	6.0	0.0	0.01	0.3	#		212		7,2	0	13
C. Wald 45N/14E-32L1 domestic	9-11-63	:	235	7.9	1.26 0.	0.59 0.60	1.5	20.0	2.47	6.0	0.00	0.02	0.1	0.1	33		172	24	84	0	目
M. Reed 46N/14E-32Jl domestic	9-11-63	:	110	7.3	10 2.	2.8 0.23 0.29	29 2.3	0.00	01.10	0000	0.00	000	0.01	0.0	<u></u>		8	27	36	0	Н
C. R. Vincent 47N/14E-2H1 domestic and stock	9-11-63	:	530	8.2	1.6	0.06 5.43	43 2.05	00.00	2.45	56 1.17	64 1.81	0.03	3 0.00	3.2	37		372	8	7	0	日
L. L. Smith -14B2 domestic	9-11-63	1	145	7.0	17 4.	0.35 6.0	26 0.04	9	94	1.4	0.00	8.8	10.01	0.1	8		114	17	19	0	Ħ
A. Greenwood 48N/13E-20Gl domestic	9-11-63	1	O ⁸ 177	95/19	2.89 13 2.89 1.	1.59 10		3.7 4	236 7 3.86	8.6	0.15	34	5 0.01	0.1	었		316	6	224	54	13
H. C. Wells 48N/14E-23Kl irrigation	9-11-63	:	500	8.0	24 1.22 0.	3.6 16 0.70	70 0.03	03 0.00	2.05	0.04	7.0	8.8	0.2	0.1	87		200	31	92	0	13
C. M. Cloud -35Al domestic	9-11-63	:	215	8.0	26 1.29 0	6.2 0.51 0.39	39 0.01	0.00	100	1.4	000	28	0.1	0:0	75		154	18	96	- 5	13
C. M. Claud irrigation and stock	9-11-63	1	630	mlo 77.8	3.0	0.10 6.60		5.0 3	3.50	0.01	2.50	5.3	9 0.08	4.1	52		452	95	12	0	13
						SOUTH	FORK PIT	RIVER VA	VALLEY (5-2	(2-5)											
D. Flournoy 39N/13E-6N1 domestic	9-12-63	:	203	7.7	8.4	0.16 31		0.00	108	4.6	0.12	1.2	Iou	0:0	F4 et	Fe 0.04 (total)	156	69	62	0	DWR
N. Monroe 40N/12E-11F1 stock	9-12-63	:	163	7.6	4.3 4.	14.2 0.35 0.91		5.7 0.0	80 1:31	0.10	0.12	0.03	Im	0:0	A1	e 0.01 (total)	153	95	88	0	DWR
Pit River Fanch -25J1 domestic	9-12-63	:	429	11.8	0.85	0.55	2.78 0.	0.25 0.00	3.74	16	0.23	0.0	Ict	0.0	A1 Zn	e 0.03 (total	305	63	70	0	DATE
							+	\dashv								`		-	\dashv	_	

a Deformation goldenicus or communents.

L. Groundrich deformation de described of the desc

ANALYSES OF GROUND WATER

Valor Lang or Coco. Anglyred

TABLE E-1 (cont)
ANALYSES OF GROUND WATER

1,		State well			Specific				Minero	Mineral constituents	uents in	6	parts per millian equivolents per millian	parts per millan volents per mill	Titon		Total	à	Hardn	619	
1 9-11-63 265 7-3 1.5 1.	Owner and	number and ather number	Date sampled	Temp in •F		 (Ca)		(No)	sium of	bon- Bica				Fluo- ride		Other constituents ^d		aod mu	n		Anolyzed by c
1 9-11-65 256 773 256 156 173 17							SOUTH 1	1 ===	r RIVER	VALLEY (5	-	3		_							
9-10-63	P. M. yers domestic and irrigation	41N/11E-2J1	9-11-63	;	263 7										0.0	0.00	221		37.77	0	DWR
1 9-11-63 1-	Pacific Telephone and Telegraph domestic	11N/12E-15H1	9-12-63	;											0.2	000	188		35	-	DWR
1 9-11-63 277 777 2.2 0.05 2.44 0.05	Morgan Brothers domestic	41N/13E-18Fl	9-10-63	1											0.0	0.00 0.01 0.01 0.01	722		1971	248	DWR
1 9-11-63 210 7-6 11-7 0-11 0-11 0-11 0-11 0-11 0-11 0-11	J. H. Michael domestic	42N/10E-29H1	9-11-63	1											0.3	0000	195		t-	0	DWR
1 9-11-63 210 7-6 17-7	F. Martin domestic	42N/11E-19E1	9-11-63	1											2.0	Re 0.02 (total) Al 0.05 Wn 0.01			9	С	DWR
11 9-10-63 800 8-2 10-10-63 800 8-2 10-10-10-10-10-10-10-10-10-10-10-10-10-1	L. Goings domestic and stock	-24A1	9-11-63	1										10	0.0	0.00 0.00 0.00	139		99	8	DWR
11 9-10-63 560 8-2 10-6 10-5 0-55 1-11 0-10 10-10	City of Alturas	42N/12E-11Q1	9-10-63	;					0.36 0.						0.7	0.05 As	361		87	\$	DWR
11 9-10-63 367 8.1 22 11.0 0.00 1.17 0.00 1.10 0.00 1.10 0.00 0.0		42N/13E-31G1	9-10-63	:										for	0.3	Fe 0.10 (total) Al 0.08 Zn 0.09	404		2	3	DWR
8-14-63 55 199 7-7 11 6-2 129 4-1 0-0 115 0-0 115 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-	E. Swanson domestic	-3201	9-10-63	:										l-d	1.0	Fe 0.02 (total) Al 0.58 As 0.01 Zn 0.01			144	E	DWR
8-14-63 65 515 8-0 20 13 10 10 10 10 10 10 10 10 10 10 10 10 10								<u> </u>	G VALLEY	(17-6)											
8-14-63 65 515 8-3 20 13- 1-5 1-5 1-5 1-5 1-5 1-5 1-5 1-5 1-5 1-	E. G. Babcock domestic	37N/TE-2D1	8-14-63	55										Les	0.0	0.0			\$C.	3	DWR
8-14-63 221 8.0 113 12 12 0.07 0.00 120 5.11 0.07 0.00 0.11 0.07 0.00 0.11 0.07 0.00 0.11 0.07 0.00 0.11 0.00 0.00	W. H. Gerig domestir	38N/TE-2P1	8-14-63	69		 								Lac	0.0	Fe 0.31 (total)			150	2	DWR
	F. Leonard domestic	38N/8E-17K1	8-14-63	1										1-4	2.0	0.15 (t	178		70	0	DWR
									_					_							

6. Groumstric detamination:
c Analysis by 3. September 2. Lein Labanius (U.S.G.S.), Pacific Chemical Coneutronis (P.C.C.), Lein Labanius (L.L.),
c Analysis by 15. September 3. State Department of Worler Resources (D.W.R.) as indicated.
Terminal Testing Labanius (T.L.) or State Department of Worler Resources (D.W.R.) as indicated.
Terminal Testing Labanius (Al.), Areanic (Aa), Capper (Cu.), Lead (Pb.), Manganes (Mn), Zinc (Zn), resported here as \$500 except as shown
d. Iron (Fa), Aluminum (Al.), Areanic (Aa),

158

ANALYSES OF GROUND WATER TABLE E-1 (cont)

10 10 10 10 10 10 10 10	Sodum Mont Cont Decoration (Not) (Hoto) (Hot
128 128	(1) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
1.87 1.27 1.27 1.28	3.09 E3 6.4 0.00 1.13 6.4 0.00 1.14 0.26 0.15 0.00 1.15 0.26 0.15 0.00 1.15 0.17 0.10 1.16 0.17 0.10 1.17 0.10 1.18 0.17 0.10 1.19 0.10 1.10 0.10
1.8	1
1.8	6.3 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.00 0.00	1.00 1.00
166 320 462 10.1 10.2 10.	115 117 115 5.25 5.25 5.25 5.25 5.25 5.25 5.25
0.03 0.02 0.02 0.02 0.03 0.03 0.03 0.03	6.0 23 5.14 0.00 0.05 1.00 0.14 0.00 3.0 33 6.17 0.00
8.2 8.4 8.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	3.0 33 6.7 0.0 0.74 1.44 0.17 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	_
0.0 0.0 0.79 0.1 0.0 0.00 0.79 0.01 0.0 3.4 0.3 0.0 0.1 0.1	FAIL RIVER VALLEY (5-5)
3.4 4.3 0.0 0.1 0.1 0.07 0.12 0.00 0.01	$\frac{48}{2.39} \frac{34}{2.84} \frac{25}{4.13} \frac{4.3}{0.11} \frac{0.0}{0.00} \frac{511}{8.39}$
	$\frac{1.6}{0.08} \frac{0.5}{0.04} \frac{42}{1.83} \frac{0.9}{0.02} \frac{0.0}{0.00} \frac{106}{1.74}$
8 4.8 1.8 3.2 0.2 0.1 52 06 0.10 0.05 0.52 0.01 0.2 0.1 52	19 16 56 5.8 0.0 248 0.96 1.34 2.43 0.15 0.00 4.06
78 0.03 0.00 9.2 0.1 0.0 28	$\frac{14}{0.69}$ $\frac{3.9}{0.32}$ $\frac{22}{0.95}$ $\frac{2.1}{0.05}$ $\frac{0.0}{0.00}$ $\frac{109}{1.78}$
53 0.00 0.00 0.00 0.01 42	$\frac{36}{1.76} \frac{13}{1.06} \frac{14}{0.61} \frac{3.2}{5.08} \frac{0.0}{0.00} \frac{216}{3.53}$
55 0.07 0.00 0.23 0.01 0.0 38	$\frac{24}{1.18} \frac{3.5}{0.29} \frac{11}{0.48} \frac{2.3}{0.06} \frac{0.0}{0.00} \frac{101}{1.65}$
10 0.10 0.04 0.48 0.04 0.0 41 0.0 1.8	26 11 14 3.6 0.0 132 1.28 0.93 0.60 0.09 0.00 2.10

a Datermined by addition of constituents.

b. Graviments determined Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (PC.C.), Lain Laboratory (L.L.), c. Ladysta by U.S. Gadiapide Survey, Quality of Water Department of Water Resources (D.W.R.) or start of the Consultant of Water Resources (D.W.R.) or Start Object (C.C.), Lain Laboratory (T.L.), and C.C.), Lain Laboratory (T.L.), and C.C., Ladysta by C.C., Ladysta by C.C., Ladysta by C.C., Lain Laboratory (L.L.), and C.C., Laboratory (L.L.), and C.C., and C.C., and C.C., and C.C., and C.C., and C.C.

ANALYSES OF GROUND WATER TABLE E-1 (cont)

			S	Specific					Paloe Co	Mineral ronatituents	ni aluen	·	parts	parts per milllon	lon	,						
	State wall number and	Date	Tamp	conduct-	7		-	H		Consider		_	Ş -		6			Totol dis-	Cant	Hardness as CaCO ₃		Anolyzed
987	ather number	psidwos	g.	(micro- mhos of 25° C)		Calcium Magna (Ca) (Mg)		Sadium Sign (Na)	Patos - Carbon sium ate b (K) (CO ₃) (ate bonate (CO ₃) (HCO ₃)	off fore 5,1 (SO ₄)	E E E	(NO ₃)	3) (F)	(B)	(SiO	(SiO ₂) Other constituents ^d		DE E	Totol P	N.C. Pp.	by c
	MDRAM						FALI	RIVER	VALLEY	FALL RIVER VALLEY (5-5) (Co	Cont.)											
R. A. Peters domestic	35N/3E-24F1	8-13-65	;	146	7.7	13 8.0	2.40 05.00		0.03 0.00	00 00	0.00	00:0	0.02	0.0	0.0	8		901	13	8	0	13
B. J.hns n lomestic	38N/4E-30H1	8-13-64	57	58	2 2 3 3 4	1.27 1.41	0.50		0.04 0.00	00 3.05	1.4	3 5.7	00:0	0.01) ()	68		186	97	134	0	13
								RELDIN	RELIDING BASIN ((9) N												
Cottonwood Water Department municipal	20N/4W-2M1	5-27-63	899	193	8.0	0.50	0.70		0.02	0.00 1.17	2:00	5 0.11	2.3	0.0	70.0	2		143	35	69	0	DWR
F. Park domestic and irrigation	308/3W-4M1	5-27-64	33	192	0.8	0.60 0.94	0.41		0.05	00 11.80	0.00	1.10	0.00	0.0	-15. -15.	a l		185	20		0	DWR
D. Marta	-34Dl	5-27-63	79	264	2.8	0.60	2.2		0.02	0.0 2.42	7.2	3.1	0.02	0.00	0.0	77.7		178	177	118	0	DWR
L ftus irrigation	30N/4W-1E1	6-24-63	39	553	7.7	0.40 0.60	0.10		0.00	0.00 64	6.9	6.6	9 3.0	0.00	8	21		113	27	53	1	DWB
Shacta County irrigation	30W/4W-16H1	5-27-63	79	252	8.1	17 0.85 1.19	9 0.52		17.4	0.00 132	2.7	6.7	9 0.03	0.0	50	82		161	50	102	0	DWR
Happy Valley School domestic and irrigation	30N/5W-15R1	5-27-15	39	141	7.9	9.6 0.45 5.45	0.74		0.02	0.00 13	0.20	0.07	0.00	0.02	0.02	777		179	07	577	0	DWR
C. A. Young domestic	-17R1	5-27-63	S	148	7.8	0.40 0.30	07.0		9.0	0.0 82	0000	0 0.12	20.00	0.00	20.00	22		137	14	38	0	DWR
H. M. Gilbert irrigeti n	31N/3W-7K1	6-25-63	1.9	214	110 110	113 2.6 0.45 0.79	118		100	0.00 2.16	1.0	3.08	0.00	0.00	ं	7		162	34	42	5	DWR
mblin domestic and irrigation	-12E1	5-27-63	10	201	8.0	0.95 0.6	0.33		900	0.00	0.10	0.12	2 0.07	7 00.0	8	21		180	16	8	0	DWR
Enterprise Sch ol District domestic and hrigation	31M/4W-7A1	6-24-63	99	220	6 6	20 1.00 0.68	11 14 0.01 BS		0.02	0.00 2.15	0.03	0.00	00:00	0.01	0.08	8		148	%	20	0	DWR
L. A. Stayer domentle and irrigation	-15B1	6-24-63	69	220	0.00	6.49 0.13	18 0.78		0.03	0.00 11.95	0.0	0.28	IS	0.00	0.15			168	33	17	0	DWR
															_				_	-	_	_

ANALYSES OF GROUND WATER TABLE E-1 (cont)

	P															
	Analyzed			DWR	DWR	DWR	DWB	DWR	DWR	DMR	DWR	DWR	DWR	DWR	DWR	DWR
	as CoCO ₃	N.C. Ppm		0	0	0	16		0	0	0	0	7,	U	5	2
1	os co	Tatat		52	61	88	153	09	109	73	79	35	-3	35	17	£0
	455	Ē		27	69	22	86	E .	37	78	20	ee .	ň	\$	3	50
1	dis-	Spilos in ppd ni		108	278	160	2240	122	242	435	243	68	114	351	198	164
		(SiO ₂) Other constituents													-	
	210	(SiO ₂)		31	27	92	15	27	09	94	ਤ	81	2]	45	#	뢰
	8	(e)		0.04	0.48	0.07	19.0	5	0.16	0.1	0,12	0.13	44.0	5.0	0.42	0.36
millia	Fluo-	(F)		0.0	4.0	0.0	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.3	0.2	5.02
ports per million	Z	trote (NO ₃)		3.3	0.05	0.0	0.05	5.1 0.08	4.8 0.08	0.0	0.0	3.4	33	0.05	0.02	0.03
d Single	- or	\$ (C)		3.6	1.83	0.54	1200 33.85	0.25	24	175	1.18	5.0	0.28	2.71	31	0.20
ē	- Ing	(SO ₄)	~	0.03	0.00	0000	192	0.17	8.2	9.6	21.00.04	3.4	1.2	0.0	0.08	0.54
Mineral canstituents	Bicar-	(CO ₃) (HCO ₃)	(Cont.)	1.26	2.33	1.88	167 2.74	1.20	2.61	1.88	2.13	67.0	0.31	2.01	2.24	1.87
aral ca	rood	CO 3)	-6-6	0.00	0.00	0.00	0.0	0.0	0.0	0.00	0.00	0.00	0.0	0.0	0.00	0000
.₹	O-sutue	sium ate b (K) (CO ₃) (I	BAST	0.0	1.4	0.00	3.0	1.4	2.3	2.4	2.5	0.0	0.3	0.04	1.4	0.02
		(ON)	REDDING BASIN (5-6)	9.2	2.83	1.74	862 37.50	0.56	30	5.35	38	0.36	0.4	1114 4.96	38	15 0.91
	Moone	E(Mg)		8.1 0.67	6.3	3.3	5.1	6.1	11 0.93	6.8	9.5	0.23	5.4	20:0	6.3	0.66
	1	(00)		0.37	0.70	7.8	2.64	0.70	25	0.90	16 0.80	9.4	0.30	0.20	05.90	00:1
	Æ			9.	7.7	7.9	8	7.8	8	7.9	8.1	7.5	6.9	8.1	8.3	7.9
Specific	ence	mhos of 25°C)		144	770	236	1,320	182	350	761	340	110	138	529	312	258
	Temp			79	89	10	62	63	19	88	99	29	75	73	70	£9
	Dots			6-24-63	5-27-63	5-27-63	6-24-63	6-24-63	6-24-63	6-24-63	5-27-63	6-24-63	6-24-63	6-24-63	6-24-63	6-6-63
9000	number and		MDB&M	1,001-	31N/5W-13D1	-25K1	32N/3W-17E2	-20P1	-3272	-32h-	-3501	32N/4W-14F2	-16B2	-2002	32N/4W-34Pl	320/54-2641
	Ownsr ond	987		P. S. Templeton domestic and irrigation	California Motel domestic and irrigation	U. S. Department of Interior domestic and irrigation	W. H. Johnson domestic and irrigation	W. E. Pike domestic and irrigation	C. Boyle domestic	V. Phipps irrigation	Coldinon	Hills & Dales Rest Home irrigation	W. Ross domestic	E. Jones domestic	Columbia School District domestic	H. Snow Jr.

Determined by additional or constituents.
 A Communities determination or constituents.
 A Government of determination or constituents of constituents (PCC), Lein Laboratory (L.L.), Frontier by US Sanatory (T.L.) or State Department of Worter Risources (D.W.R.) or indicated.
 A from (See, Administrational Constituence) of Specifical Constituence of Specific Constituence

TABLE E-1 (cont) ANALYSES OF GROUND WATER

	0 c c		=	65													,	,	
	Anolyzed by c		DWR	DWR	13	13	13	11	님		3	13	11	7	13	1	1	3	
Hardness	E O S		0	С	0	0	0	0	0		٥	٥	٥	0	0				
			29	28	04	62	158	. 50	18		20	2/	145	105	93	9	19	79	
ě	Pod I		8.	56	25	13	8	150	23		4.4	8		50	Ä	Ĉi.	23	50	
Total	solved solved in ppm		16	90	80	104	E .	55	148		114	304	2.18	136	8	70	108	108	
	Silico (SiO ₂) Other constituents ^d																		
					8	8	53	8	61		12	2	88	17	#	125	77	5	
High	Boron (B)		0.0	0.0	0:0	0.0	0.0	0.0	0 0		0.0	2,1	0.2	0.0	0.0	1.0	0.0	0.0	
equivalents per million	Flug-				0.0	0.0	0.0	0.0	0.0		0.00	0.0	0.00	0.0	0.00	0.00	0.00	0.00	
olents pe	rote (NO ₃)		0.05	0.0	0.00	0.0	0.0	0.0	0.0		0.0	0.03	0.0	0.00	0.0	0.05	0.00	0.0	_
dinbe	Cio (Ci)		0.05	0.0	0.0	0.00	0.0	0.0	0.00		0.00	8.50	36.0	0.00	0.00	0.0	0.0	0.00	
=	Sul - fote (SO ₄)		0.03	0.5	0.04	1.0	0.0	0.05	0.5		0.00	0.05	0.40	0.04	0.0	0.00	0.00	6.2	
Mineral constituents	Bicor- banofe (HCO ₃)	(2-5)	44 0.72	11.1	71	1.50	3.65	0.65	34	(6-4	119	25.25	3.47	2:32	108	1.08	100	1111	
ral cor	ofe 30 3) (VALLEY	0.00	0.00	0.00	000	0.00	0.00	0.00	LEY (C	0.0	0000	0.00	0.00	0.00	0.0	0.00	0.0	
M.	Potas-Carbon- stum ate (K) (CO ₃)	NIMANO! 1	2.3	0.05	0.00	2.9 0.07	5.4	1.8	1.4	INITAN VALLEY (0.0	0.5	0.0	0.0	0.03	2.0	0.0	0.1	
	Sadium (No)	IAKE A	5.1	1.8	6.20	0.20	6.7	2.8	2.8	Ä	25.96	1.05	2.00	0.52	0.19	0.31	0.39	6.3	
	Magne - sium (Mg)		0.21	0.21	2.7	5.1	18	5.0	0.5		0.63	20:0	16	111	6.3	0.50	6.7	3.2	
	Calcium Mc (Ca)		0.37	20.70	0.59	0.83	34	0.41	0.35		7.2	2.8	1.62	1.15	23	0.58	0.73	1.25	
	H.		7.2	7.3	7.8	7.0	8.1	E-	7.1		6.0	4.8		0,	7.7	-:-	2.8	7.8	
Specific			6	82	115	147	310	3	51		165	1,772	1997	252	181	114	156	185	
3 3	Temp in °F (r		:	:	;	1	1	;	1		;	1	1	;	1	;	:	1	
	Date		8-13-63	8-13-63	8-13-63	8-13-63	8-13-63	8-13-63	8-13-63		8-14-63	8-14-63	8-14-63	8-14-63	8-14-63	8-14-63	8-14-63	8-14-63	
Stote well	number and ather number	MDB&M	28H/TE-5LL	~5N1	-7A1	-7HI	-1881	-1801	-1841		26N/10E-4E1	-6E1	-16Pl	-1841	-2341	-27R1	-2841.	-30F1	
	Owner and		Denver Guess domratic	Denver Garas domestic	William Caeunr domestir	Sam Harreld domestic	H. E. Rogers	J. W. Stone dommetic	State of California domestic		Curl Evens domestic	C. D. Doyle	Traceni Bros.	State of California	C. Bainbridge domestic	J. Young domestle	C. J hneon domestic	F. Yanez domestic	

o Determined by addition of constituents

b. Grammaric determination

b. Grammaric determination

b. Grammaric determination

b. Grammaric determination

c. Frammaric Market (P.C.C.), Lain Labandary (L.L.),

c. Frammaric Market (P.C.C.), Lain Labandary (L.L.),

c. Frammaric Market (A.C.), Lain Labandary (L.L.),

c. Frammaric Market (A.C.), Capter (C.), Leon (P.), Monganes (M.), Zinc (Z.), reported here or \$670 secon or shown

c. Iron (F.), Aluminaru (A.), Assaulc (A.), Capter (C.), Leon (P.), Monganes (M.), Zinc (Z.), reported here or \$670 secon or shown

c. Iron (F.), Aluminaru (A.), Assaulc (A.), Capter (C.), Leon (M.), Monganes (M.), Zinc (Z.), reported here or \$670 secon or shown

c. Iron (F.), Aluminaru (A.), Assaulc (A.), Capter (C.), Leon (M.), Monganes (D.), Monganes (M.), Topic (M.), Assaulc (M.), Topic (M.), Assaulc (M.)

162

TABLE E-1 (cont)
ANALYSES OF GROUND WATER

	9 000		0,	Spacific					Mins	Minsrol constituents	itituents	٤	ports per million	ports per million	million	l _e		Į,		1 3		
Ownsr ond	number ond other number	Dots	Tamp in °F	conduct- once (micro-	표		Mogns -	Sodium	Potos - Corbon-	orbon-B	Bicor - S	Sul -	- of G	Ni-	Fluo-B		Silico Other constituents ^d	psolos psolos spilos	- Log	as CoCO ₃		Analyzed by c
				mnos 51 25° C)	1	(°C)			(K)	(CO 3)	- 1	_		NO ₃)	$\overline{}$		120			m dd	e do	
	MDB&M							AMER	NARFICAN VAL	VALLEY (5-	(5-10)											
J. Boynton domestic	24N/9E-2A1	8-14-63	:	200	6.9	0.51	0.98	0.50	0.03	0.0	2,00	90.08 010	0.00	000	0.00	0.0		112	52	13	D	13
Greys Flower Gardens domestic	-1041	8-13-63	;	147	7.7	1.24	0.14	2.8	0.01	0.0 87	1,44	2 60.00	0.0	0.00	0.00	0.0	27	78	00	69	ē	념
R. T. Kard domestic	-1011	8-13-63	1	35	6.8	4.4	0.0	0.0	0.0	0.00	0.25	3.07	00.0	13	0.00	<u>9</u>	7.9	26	10	13	٥	扫
D. E. Bellamy domestic	-1641	8-13-63	;	70	7.2	0.55	91.0	0.12	0.01	0.00	41 4. 0.66 0.	0.10	0.0	5.2	00.0	0.0		ě.	1,4	35	C)	Ħ
R. W. Asplund domestic	24N/10E-6N1	8-14-63	;	270	80	23	0.80	24	0.02	0.0	2:30	0.03	5.3	000	0.00	71 1.0	7	160	i,	96	٥	Ħ
B. D. McRoberts domestic	-811	8-14-63	1	250	7.9	28	1.00	0.36	4.0	0.00	2.50	0.19	0.0	0.00	0.00	0.0	-63	146	13	119	0	13
M. A. Haney domestic	-18D1	8-14-63	1	66	7.5	99.0	23.0	0.10	0.0	0.00	22 0.97	60.0	0.00	0.00	0.00	6.0	7.6	62	10	45	0	13
B. Williams domestic	-20D1	8-14-63	1	700	27	3.2	0.11	3.3	1.00	0.00	0.29	1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.00	0.02	0.00	0.0	0.8	34	35	2	0	3
								MOID	MOHAWK VALLEY (5	EX (5-1	5-11)											
R. Schoensee domestic	22N/12E-901	8-21-63	1	249	0.0	0.80	1.13	0.70	0.11	0.00	1.95	0.02	0.00	9,0	0.0	0.0		208	98	16	0	13
Mr. Sherred domestic	22N/13E-19N1	8-21-63	;	220	8.0	1.04	7.8	0.65	3.6	0.00	2.27	6.2	0.11	0.00	0.0	7.7	J	162	1.2	ž	=	扫
W. A. Barks domestic	-30R1	8-21-63	1	350.	7.9	15 0.75	0.77	2.00	6.0 90.0	000	1.76	1.40	0.50	000	0.00	3	01	546	95	1	2	3
								S	SIERRA VALLEY (5-12)	EY (5-1	(2)											
R. Bradley domestic	20N/14E-4G2	8-20-63	;	188	8.1	0.83	0.62	0.55	3.8	0.00	2.12	7.00	0.00	0.00	0.00	0.00	-73	134	92	72	Ţ	3
G. McMillen domestic	21N/14E-15J1	8-20-63	;	415	8.2	0.23	0.75	3.35	0.11	0.00	1.35 2.22 0.0	0.00	1.55	32 0	0.0	21.0	242	308	92	200	9	13
G. Van Vleck domestic	-2211	8-20-63	1	750	60	1.06	1.42	105	0.29	0.0	3.25	0.61	24.10	2.5 go.0	0.00	0.7	33	188	21.5	154	0	13
o. Determined by addition of constituents	of constituents									1						1						

o. Destimate by addition of constituents.

E. Anolysis by U.S. additional constituents.

E. Anolysis by U.S. additional value of the Constituent of the Constituent (P.C.C.), Lein Lebandery (L.L.), Termin Terminol Termin

TABLE E-1 (cont)
ANALYSES OF GROUND WATER

7		_														
Analyzed by c		Ħ	13	В	Ħ	Н	13	日	13	Ħ	Ħ	13	13	13	Ħ	
		0	0	0	0	0	٥	0	0	9	0	28	0	0	0	
Tata I		104	77	43	55	79	33	27	15	317	25	180	59	125	37	
E South		16	23	93	20	707	%	62	8	69	2	2	8	17	7.7	
		150	136	1064	180	124	414	200	475	1081	150	298	7947	216	288	
Other constituents ^d																
Silica (SiO ₂		9	앥	3	775	35	76	62	9	22	22	2	25	27	95	
Boron (B)			0.0		0,1	0.1	1:1	0.1		0.1				1.0		
Fluo- ride (F)		0.0	0.0	0.02	0.00	0.0	8.0	8.0.0	0.02	0.2	0.03	0.0	0.0	0.0	0.05	
trate (NO ₃)		0.0	3.0	0.18	3.4	0.0	23	57.0	23	0.21	00.0	48 0.77	0.00	0.50	69.0	
Chlo- ride (CI)		0.00	0.03	321	0.0	0.00	39	0.00	0.70	163	0.05	12	3.43	0.00	1.20	
Sul - fate (SO ₄)	3	0.5	2.4	193	0.22	0.0	0.12	0.03	0.5	332	0.01	0.21	2.28	0.0	0.05	
Bicar- banate (HCO ₃)	(Con	2.56	2.00	130	128 2.10	1.70	252	θ <u>τ.ο</u>	2.27	5.94	1.91	3.04	1.62	181 2.95	1.31	
Carbon ate (CO ₄)	7 (S-	0.00		0.0	0.00					16.0.52		010				
Patas Fium (X)	VALE	0.0	0.05	0.21	0.12	0.03	0.17	5.7	2.15	0.05	5.59	0.3	0.0	0.10	5.6	
Sadium (Na)	STERR	9.4	0.48	335	28 1.20	0.41	5.10	26	3.10	277	31	21	6.30	0.53	2.50	
Magne- sium (Mg)		1.03	8.1	0.16	0.52	6.7	0.38	0.30	0.10	56 1.62	3.3	17	1.7	6.79	0.35	
Caleium (Ca)		21	0.87	0.70	0.57	0.73	5.6	0.23	0.80	35	4.4	2.16	1.1	1.96	0.38	
£										00						
ance (micra- mhas		220	183	1480	215	156	530	171	330	1550	195	1,30	735	290	325	
Ten n • F		1	:	1	:	:	1	ŧ	1	+	73	1	:	1	;	
Date		8-20-63	8-20-63	8-20-63	8-20-63	8-20-63	8-20-63	8-20-63	8-20-63	8-20-63	8-20-63	8-20-63	8-20-63	8-20-63	8-20-63	
number and after number	MDB&M	21N/14E-29/1	-36K1	21N/15E-5D1	-943	22N/14E-14F	22N/15E-11F1	-12B1	-1703	-26K2	22N/16E-5N2	23W/14E-25G1	-3511	23W/15E-28H4	-3501	
Owner and		J. Berutii domestic	P. A. Torri domestic	E. Filipini domestic	J. Dandua domestic and stock	Mrs. Havey domestic and stock	J. Roberti domestic and stock	Huntly Mros. domestic and stock	P. R. Scolari domestic and stock	Lucky Hereford Ranch domestic	C. D. Franchini stock	Mervino Air Service domestic	A. Folchi domestic and stock	R. A. Swartz domestic	Plumas County stock	
	number and Date transport amples a gampled in FF (intered that in the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest of the interest	number and other number and other number and other number and other number and other number and other number and other number. Date of the number and other number. PH Calcium Naggne (n) (N) (N) (N) (N) (N) (N) (N) (N) (N) (N	Owner and answerts. Owner and one settle. Owner and owner and one settle. Owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owne	Owner and one state Out of the ramber and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control and control	Owner and one state Out of the runder Long of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder Out of the runder	Owner and one state Out of the runder Long but with a control of the runder Out of the runder No.	Owner and one of the runder and one of the	Owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and owner and own	Owner and other number Column transport Column transport Saging and other number Column transport Saging and other number Saging and other numbers Saging and other numbers <td> Parity P</td> <td> Partition Part</td> <td>Openet and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standar</td> <td>Opening Opening Columniate Opening Columniate Opening Opening Columniate Co</td> <td>Opening of such a complete of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the m</td> <td> Part /td> <td>Options and states and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract an</td>	Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity Parity P	Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Partition Part	Openet and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standard large and the standar	Opening Opening Columniate Opening Columniate Opening Opening Columniate Co	Opening of such a complete of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the market of the m	Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part	Options and states and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract and contract an

Descrimente by editional or constituents.
 Accountified determination.
 Accountified determination.
 Accountified determination.
 Accountified by U.S. developed to Valve Borach (U.S.S.S.). Pacific Chemical Consultant (PCC.). Lain Labourton (L.L.). Forman Testing Laboratory (T.T.L.) or State of opportment of Water Resources. (D.W.R.) or instituted here as \$500 except os shown d. (Fe), Aluminum (Al), Arsanic (Ae), Copper (Cu), Lead (Pb), Manganes (Mn), Zinc (Zn), repaired here as \$500 except os shown

164

ANALYSES OF GROUND WATER TABLE E-1 (cont)

							_											
	Analyzed by c		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR		DWR	DWR	DWR
:			9	m	0	0	0	%	09	0	0	0	0	0		15	11	35
Hardness			15	81	161	506	19	205	240	93	79	16	185	8		318	175	7,02
à	E DE		23	91	50	13	25	00	15	91	16	24	31	17		00	0	3
Total	ealved solids in ppm				221				313	1430								
	Silica (SiO ₂) Other constituented																	
					37				14	a								
Ligh	Boron (B)				4.0				0.7	62								
valents per millian	Flug- ride (F)				0.0				0.00	0.00								
ents per	rofe (NO ₃)				10.0		-		2.0	0.05								
equivalents per millian	음 호 호 호		0.0	0.12	0.16	3.5	3.7	7.6	0.70	566	0.08	1.6	0.62	0.05		0.37	0.14	0.70
٩	Sul - fate (SO ₄)				3.4				5 <u>T</u>	0.00					- 1			
Mineral constituents	Patas-Carbon Bicar- sium ate banate (K) (CO ₃) (HCO ₃)	(5-13)	0.18	1.57	3.79	4.31	93	3.57	3.60	273	1.70	133	236 3.87	2.05	(5-15)	350	3.28	8.90
eral co	arbon- ate (CO ₃)	VALLEY	0:0	0.0	0.00	0.0	0.0	0.0	0.0	0.0	0.00	0.00	5.16	0.00	VALLEY	0.20	0.00	0.24
Z.	sium (K)	UPPER LAKE			0.0				0.05	2.6								
	Sodium (NO)	UPPE	0.09	7.4	0.83	14	10	8.7	20 0.87	19.40	6.6	0.56	35	8.2	KELSHYVILLE	13	7.4	1.09
Specific conduct-	Magne- sium (Mg)				23				3.30	0.66								
	Calcium (Ca)				1.35				30	24								
	Ŧ		6.9	7.6	0		€.	0.8	6.0	ω 	7.8	60	-7; -1;	8.0		4.8	0.8	4.8
	ance (micra- mhas at 25° C)		4.5	186	371	412	168	114	536	2250	184	214	7462	506		613	360	916
	Temp in • F		89	63	63	1	1	1	;	63	1	89	1	1		62	62	62
	Date		6-10-63	6-20-63	6-10-63	6-10-63	6-10-63	6-10-63	6-10-63	6-10-63	6-10-63	6-10-63	6-10-63	6-10-63		6-20-63	6-20-63	6-10-63
State well	number and ather number	MDB&M	14N/9W-6F2	15N/94-6Fl	EL-	-17P1	-31P1	15N/10W-3Cl	-331	-10E1	-12K2	-1341	-24HJ	16N/9W-31L3		1311/94-2K2	-301	-601
	Owner and use		Mr. Overington domestic	L. J. Skaggs irrigation	Upper Lake Cemetary Dist.	G. Bowers domestic	E. Vehard domestic	E. Lewis domestic and stock	L. Pecinovsky domestic	B. Dunton not used	Lake County Cannery industrial	C. W. Fahlen domestic	H. Jarvis irrigation	A. Suntos domestic		R. Field irrigation	C. Benson irrigation	C. W. Butler irrigation

Determined by addition of constituents.
 Secure of the constituents.
 Secure of the constituents.
 Secure of the constituents.
 Secure of the constituents.
 Secure of the constituent of t

TABLE E-1 (cont)
ANALYSES OF GROUND WATER

	Analyzed			DWR	DWB	DWR	DWR	DWR	DAR		DWR	DWR	DWh		DWR	DWR	DWR	DWR	
	_	N.C Ppm		13	0	0	20	an	SI			-	9		С	0	0	-7	
	as CoCO ₃	Total		295	117	216	545	32£	272		100	304	279		81	8	23	194	
	- Sec	Ē		00	16	14	Ħ	5	10		8	30	28		74	63	H	6	
	dis	ealids in ppm		351			298				179	1468	844		198	132	1,57	305	
		(SiD ₂) Other constituents ^d																	
	Sito	(SiD ₂)		52			21				2.1	5	8		14	88	8	19	
[5		(B)		0.3			0.2				c.c	2.1	J.0		1.0	0.1	1.3	0.4	
million	- onl	şē.		00.0			00.0				3	1.08	0.2		0.0	0.2	0.02	0.02	
parts per million	İ	(NO ₃)		5.27			22.0				3.2	4:00	0.10		0.08	5.8	0.0	0.35	
a		<u> </u>		9.4	3.1	18	16	0.37	0.25		17	0.34	7.7		5.0	5.6	0.42	18	
ë	1 1 1 1	(SO ₂)	t.)	60			38				13.0	0.03	0.0		0.0	13	0.02	0.50	
Wineral constituents	Biror	bonate (HCO ₃)	5) (00	122	2.52	274	3.90	374	319	16)	132	80.8	1.29	777	2.69	1.56	7:08	3.5	
1 10	- Application	(CO ₃)	VALLEY (5-	0.0	66	0.00	0.00	0.27	0.0	EX (S	0.0	0.27	0.00	EY (5	0.00	0.00	14 0.47	0.00	
ž.	Date	(K) (CO ₃) (E VALLE	4.0			0.9			HIGH VALUEY (5-16)	5:0	0.11	0.11	BURDS VALLEY (S	0.03	4.0	2.9	0.05	
		Sodium (No)	KULSEKVILLE	0.52	10	16 0.70	14	0.65	0.01	H	16.7	2.65	2.26	BOL	1343	01.0	1.39	1.04	
	9400	(gM)	회	53			\$3.5 \$8.5				15.	5.12	4.37		9.4	1 0 38:0	43	25.2	
		(calcium)		30			2.04				57.0	119	1.20		3.85	16 0.80	3.14	1.85	
	급				8	8.1	8.1	3.4	8.1		7.9	. 0	8.2		7.9	7.6	8.5	8.1	
Specific	ance	mhas at 25° C)		578	248	11911	527	909	145		309	752	703		287	211	689	11.77	
	Ten	£		09	1	63	:	;	499		19	72	69		1	:	;	;	
	Date	реідшое		6-11-63	6-11-63	6-11-63	6-11-63	6-11-63	6-20-63		6-11-63	6-12-63	6-11-63		6-11-63	6-11-63	6-11-63	6-11-63	
	number and	other number	MDB6M	1311/94-801	-8N1	-12M1	-1602	141/94-321	-3232		14N/8W-23K1	-24B2	-24LJ		13N/7W-15N	-21B	TT	-22B	
	Owner	950		Davidson irrigation	H. E. Marschall domestic	L. Wright irrigation	B. Henderson domestic	I. Morrison domestic and irrigation	I. Morrison irrigation		G. R. Mitchell stock	High Valley Ranch irrigation	N. Stone irrigation		T. Barrick domestic	F. Young domestic	J. Berger domestic	G. Bartram domestic	

o Determined by addition of constituents.
b. Grammaris determination. Survey, Duality of Woter Branch (USGS), Pacific Chemical Consultante (PCC.), Len Laboratory (L.L.), c. Janylets by U.S. Geological Survey, Duality of Woter Branch (USGS), Pacific Chemical Consultante (PCC.), Len Laboratory (L.L.), c. Janylets by U.S. Geological Survey, Coulty of Woter Branch (U.S. Geological Chemical Survey), Consultante (December 1), page 1989, Managerses (Manipum (L.D.), reported here as \$350 secept os shown in ref. (Pc.), Amelian (M.), Zinc (Zhi, reported here as \$350 secept os shown

	State			Specific					Min	ıral con	Mineral constituents	Ē	parts per millian equivalents per million	rts per ents p	millian er milli	uo			Total		Harda	88	
Owner and use	number and other number	Date sampled	Temp in °F	conductions once (micro- mhas at 25° C)	£	Calcium (Ca)	Magne- sium (Mg)	Sadium (No)	Pojas-Carbon- E sium ate b (K) (CO ₃) (I	ate b (CO ₃) (I	anote ACO 3)	Sul - fote (SO ₄)	Chlo-	rate (NO ₃)	Flug- ride (F)		SiO ₂) Oth	Silica (SiO ₂) Other constituented	edids equids in ppm	E S C L	as CaCO ₃ Tatal N.C.	N.C.	Anolyzed by c
								SACRAN	SACRAMENTO VALLEY (5-21)	TEEN (2-51)												
	MDB8M								TEHAM	COUNTY	-												
Kelsey irrigation	23N/2W-5Al	6-17-63	69	343	0.8	0.95	1.33	1.22	0.03	000	3.18	5.8	5.3	2.8	0.2	0.0	24 A1	<u>0.07</u>	198	34	114	0	DWR
W. Angleton irrigation	23N/3W-22Q	6-17-63	ц	349	7.9	1.15	1.37	96.0	0.7	0.00	2.52	0.29	21	2.2	0.0	2.0	29 Fe	0.91 (total) 0.25 Pb 0.01	208	27	126	0	DWR
D. D. Smith domestic and stock	-35B1	6-17-63	69	214	7.6	0.70	9.0	114	4.0	0:00	1.34	7.4	15	5.5	0.2	0.1	29 Fe Al	0.06 (total)	145	2	72	5	DWR
J. Ayres domestic and irrigation	24N/2W-30Cl	6-17-63	99	532	6	1.75	23.69	1.22	0.02	000	11.1	0.35	22 0.62	9.2	0.0	0.0	26 Fe Cu	0.05 (total) 0.06 0.01 Zn 0.02	305	21	222	0	DWR
G. Saulsbury domestic and irrigation	24N/3W-3P1	6-16-63	78	346	7.9	34 1	1.34	0.48	0.02	00.0	2.00	225	6.9	11	0.00	0.0	27 Fe A1 Zn	0.04 (total)	212	174	152	139	DWR
B. J. Moran & Son irrigation	-4K3	6-16-63	70	346	0.0	33 1	1.49	8.8	0.02	0.0	2.72	0,40	5.9	0.18	0.0	0	24 Al	0.05	509	Ħ	157	rs.	DAR
Corning High School domestic	-14/11	6-17-63	69	256	6-7	1.15	0.95	13	0.02	0.00	2.23	2.1.0	0.12	5.9	0.00	0.0	34 Fe	0.03 (total) 0.11 Zn 0.01	170	51	105	0	DWR
W. E. Turner irrigation	-20N1	6-17-63	89	174	7.6	0.55	0.63	0.56	0.0	0.00	1.48	60.00	3.0	4.7 0.08	0.0	0.0	36 Fe	0.03 (total) 0.07 Zn 0.01	128	32	59	0	DWR
A. L. Miller domestic	24N/5W-21L1	6-17-63	89	386	0.0	1.20	0.68	1.74	0.03	0.00	2.82	7.2	0.82	0.0	0.0	7.0	27 A1 Cu	0.11 0.01 Zn 0.02	526	4.5	104	0	DWR
S. R. Pritchett domestic	25N/1W-31ML	6-17-63	77	399	8.1	1.50	2.16	0.56	0.08	0.00	3.90	50.0	0.19	0.07	0.00	7	A A A Cu	0.01 (total) 0.04 Zn 0.20	274	13	183	0	DWR
Los Molinos Cemetery domestic	25N/2W-4MI	6-17-63	77	262	7.8			0.48	0,0	0.00	1.69		0.42				Fe As Po	0.04 (total) 0.01 Cu 0.01 0.01 Zn 0.24			103		DWR
F. B. Wray domestic	-770	6-17-63	62	567	0.0			20	-10	0.00	1.64		33				A1 Pb	0.05 0.01 Zn 0.06			263		DWR
E. Clements Horst Co.	-2101	6-17-63	78	378	7.4	8.10	4.0	3.31	3.6	0.00	2.50	0.25	25	0.10		0.1	Fe Al	0.41 (total) 0.45 Zn 0.02	281	\$	9	0	DWR
El Camino Irrigation District Irrigation	25N/3W-3N1	6-16-63	8	392	8.1			0.91	-10	0.00	3.29		0.54				Fe Al Zn	0.04 (total)			157		DWR
o Determined by addition of constituents	of constituents.																-						

b. Growmann by development or community of Water Bronch (U.S.G.S.), Pocific Chemical Consultonts (PCC), Lein Laboratory (L.L.), c. Adviste by U.S. Geological Survey (S.M.), O Sullive A Water Bronch (W.R.) as indicated.
Termon Testing Caboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
Termon Testing Caboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.

4. Iron (Fa), Aluminum (Al), Arsanic (As), Coppar (Cu), Lead (Pb), Mangoness (Mn), Zinc (Zn), reported here as 670 except as shown

ANALYSES OF GROUND WATER TABLE E-1 (cont)

												_				_	
	Analyzed by c		DWR	DWR	DWR	DWR	DWR	DWF	DWR	DWR	DWR		DWR	77	DWR	13	DWR
1000	as CaCO ₃ Tatal N.C							ii.		٥	-			0		Ĵ	
			35	157	ml	7	÷	ŀ		H	ž.,		Š.	2	1.34	She	75
è	Too E							55		Š	Š					2	
Tato	eotved solids in ppm						-16	ŝį.		190	193					5 Hr	
	Sitico Other constituentsd		Fe 0.0f (t tal) Fe 0.01 Zn 1.72	Cu 0.01	A1 0.07 Pb 0.01 Zn 0.07	A1 0.01 Zn 0.08	Fe 0.01 (t tal) Al 0.05 Fb 0.72 Zn 1.3	Fe 1.72 (t.tal) Al 1.10 Pr 0.11 Zn 9.14	A1 0.01 Pb 0.01 Zn 0.40	A1 0.06	Fe 0.11 (total)						
	Silico (SiD ₂													ž.		13	
Tion	Baran (B)						0.0	7		0.0	2			1.9		- u	
Der m	Flug- ride (F)													0.4		0.4	
valents per millian	rrate (NO ₃)						200	0.1		3.0	8.5			0.13		2.2 0.81	
equivalents per million	Cho- ride (CI)		0.00	10	9.5 0.27	0.11	0.11	0.34	9.6	4.0	0.10		- 15.	3.5	0.48	20.5	4.7 0.13
nts in	Sul - fate (SO ₄)						0.3	0.1		1.00	2/2			1.30		40.	
Mineral constituents	Sium ate bonate (K) (CO ₃) (HCO ₃)	(ut.)	1.23	2.82	111	1.52	3.75	3.30	E	37.	134	==	3.64	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4.87	17.	74.
fineral	Carbo ate (CO ₃	XII.O	0.0	1.1.	00.0	0.00	00.0	9,15	0.10	0.00	0.00	GLETTI COUNT	0.00	1.to	0.00	0.32	00:00
-	Potas sium (K)	AMA CO					0.0	0.08		6.3 N.0	0.05	OLE		7.6 0.02		7.7	
	Sadium (No)	EE	0.0	14	1/2	0.0	1.1	37	0.5	200	0.74		1.13	27.40	75	3.75	35.0
	Magne - sium (Mg)						18	1117		8.0	0.70			12.0		41	
	Calcium (Ca)						150	16		1.1	1.8			1.74		3.53	
	£		2.5	20.	÷.	7.7	20.	:	3	3.	3		Ę.	٠,	,f	3.4	10 10
Specific	ance (micro- mhas at 25° C)		20	- 15	Tr. W. Tr.	16.4	372	ě	£.	5	ŧ.		57.	-	51,	7.5	311
	Temp in °F		0	1 -	***	3	89	÷	9	1.5	1		-		÷	77	Z
	Date sampled		ti-,(i-f.3	+ - 14 at -	1) = 1 ref	6=1 =6 3	£ (30) 1 = 3	f=17=63	· · · · · · · · · · · · · · · · · · ·	(1) []	t albaf ;		8-58-63	- Inf 4	Sales at	3- 1-6 ×	
State well	ather number	MDBAM	. M W - 1B1	+ N, -W-+CL	1 d. 1-W/N1.	Are se	N 'W-1 'DL	4.73 W.1.324	1	-1.84	5 74/ W-13E		1 M 4 - E1	- (F)	18N/3#-19K1	Lan aw F1	1 41/24-601
	Dwner and		1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 .	J. Star (00.00	MBC Lumiter In.	J. Burth irritat .	H. Dewlit	. K	R. E. t. M.	315 150 B 107	Will x Oaka Gelf Curve rripation		W. We lin	E. Fr k Int 16* p	U G verment	Miles Bana	B. T. EU.

o Determine by consideration to the property of Water Branch (US.6.S.). Pocific Chemical Consultants (PCC.), Len Labaratory (L.L.), c. Analysis by U.S. colodofor Survey, Quality of Water Branch and W.R.) as indicated to the Consultant of Water Branch and W.R.) as indicated to the Consultant of Water Consultant (Al.), Exemic (As), Capper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reparted here as <u>0.00</u> except as shown of from (Fe), Aluminum (Al.), Areanic (As),

ANALYSES OF GROUND WATER TABLE E-1 (cont)

Column Magney Carbon C		Stote wall		,,,,	Specific					Miner	rol con	Mineral constituents	ē	ports per million equivolents per million	ports per million volents per mill	million			Tofol	à	Hordn	858	
1987 1988	Owner and use	number and other number	Sompled	Te di	once (micro- mhos of 25° C)	Ŧ	(Co)			sotos-Co sium (K) (c	ote by				Ni- frote NO ₃)			(O2)		pog min	Totot	N E E	Anolyzed by c
1987 1987		NDDRAM							GLESS	N COUNT	Y (Cont	7											
The property The	C. Calvert	19N/2W-23N1	8-28-63	2	049													27	1,46		310	÷	13
1001/24-11P1 8-28-63 67 77 75 75 77 77 77 77	Alta California Dairy domestic and	1.00/3M-60.1	8-29-63	70	514	9.6												99	324		Š.	=	USGS
Quinta Conjustation	industrial T. Demi	IGHT-WS/NoI	8-59-63	7.4	585	8.3		r40	99	0 3		51	200	189							5:1		DWR
Perry berry		ON/:W-1101	8-28-63	69														Ta	231		164	0	USGS
Figure Cont/lat-2011 Figure H. Perry domestic	50,1	8-28-63	89	1452	8.3		- FI	8.78	0 0		51	Ho								174		DWR	
N. Berene 200/N4-201 6-28-63 72 342 6.0 4.1 5.0 1.1 7.0 1.1 7.0 1.2		20N/ SW-2D1	1-28-63	69	844	00		-10	1.74	010		6	ट्याउ	[3]							Per		DWR
Particular Par	L. M. Berens domestic	20N/4W-2Q1	8-28-63	72	342	0.00		-10	19.61				200	.15							1444		DWR
LITIGRATION 1.15CT 8.27 4.3 4.4 5.7 5.8 4.4 5.7 5.8 4.4 5.7 5.8 4.2 5.8 5.8 4.2 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8	L. E. Dobbins irrigation	21N/2W-2D1	8-27-63	89	260													02	288		252	60	USGS
R. Phyvience EUN/34-14P1 R-27-63 T3 355 R-2 T-35 R-25 T-35 R-25		-1501	8-27-63	70	553													25	346		57	36	USGS
Staten 4.2001 8-28-63 77 35 8.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4		SIN/3W-14F1	8-27-63	73	355						- 11							221	828		141	0	13
228V/34V-2/OL 8-28-6-63 68 48 h 8.1 2.2 1.3 6.0 2.23 0.05 2.24 0.05 2.25 2.0 2.25 2.0 <td></td> <td>-2001</td> <td>8-28-63</td> <td>73</td> <td>353</td> <td>8.0</td> <td></td> <td></td> <td>1.22</td> <td>010</td> <td></td> <td>.57</td> <td>NIO</td> <td>J.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>116</td> <td></td> <td>DWR</td>		-2001	8-28-63	73	353	8.0			1.22	010		.57	NIO	J.							116		DWR
c28N/3H-3M1 8-27-63 70 52T 8-3 6-25 6-13 4-13	Baker & McCowan irrigation	22N/1W-29C1	8-28-63	89	484	8.1			38.0	Orb		59:	NIO.	17.							208		DWR
-colst 8-27-63	C. A. Nickel domestic	22N/2W-3A1	8-27-63	70	527													56	327		215	51	U.GS
22M/3#-ld1 8-27-63 73 483 8.2 20 0.05 645 0.00 20 0.00 245 0.00 20 0.00 245 0.00 245 0.00 21 0.00 21 0.05 21 0	Mills Orchard Inc.	-26B1	8-27-63	:	1436	8.1			0.83	010		10 th.	WIO.	.59							187		DWR
$-2801 829-63 70 421 8.1 \frac{19}{0.63} \frac{9.0}{0.06} \frac{132}{3.15} \frac{21}{0.59} \qquad 173$	I. C. Wight domestic	22N/3W-4G1	8-27-63	73	1483	8.2			0.87	010		50.	WI0	.56							215		DWR
	City of Orland municipal	-2201	8-29-63	70	421	8.1			0.83	010		.15	(VIIO	59							173		DWR

Operationed by addition of constituents.
 Exception of determination of the constituents.
 Exception of the constituent of the c

	Sigh well		0, 0	Specific conduct-					Minera	Mineral canstituents	tuents in		parts uivalent	parts per millian equivalents per millian	Illian		Total	1	Hardne		
Dwner and	other number	Date	Temp in of	ance (mlcra-	핕	Jeium Mc			Ilas - Carb	you- Bic		L.		- Fluo-		Silica	pevios	pod	0\$ C0CO 3		Analyzed
9 45			0	mhas at 25°C)		(Ca) sium (Mg)		(NO)	(K) (CO ₃) (HCO ₃)	(HC)	03) (SO ₄)	\$ (C)	(NO ₃)	5. (F)	(B)	(SiO ₂) Other constituents		Ē	Total N ppm	PP.C.	
	White							GLENN	COUNTY (Cont.)	Crat.)	_										
J. Fre tau	22N/3W-25B1	8-47-63	(9)	386	8.1		210	110 110 110	0.00	00 180 00 2.95	1:0	0.59							162		DWR
Grave Cometery irripation	; 2N/4W-10B1	8-27-13	17.	180	8.3		মাত	87.0 0.78	0.0	00 3.80	10	27.0							219		DWR
								Al	BUTTE COUNT	THAT											
D. E. J te. n domesti	17N/1E-1R1	8-1-63	:	793	2.5	04 C	7.5 6.6 7.4	50 2:18	2.6 5.0	0.17	8 0.18	8 0.09	0.1 0.1	_lo	0.0		11.11	\$7¢	335	0	DWR
J. C. Davin irripation	17N/2E-2D1	8-27-63	:	368	8.3	24 1.20	30 5.14	13 0.56	0.02 0.00	13:5	3.0	20.88	0.00	-13	0.0		241	177	167	=	DWR
Gridly Farm Labor Center d mestle	1.74/3E-4D1	8-22-63	:	258	0.8	0.90	1.32	0.56	3.1	2:52	0.01	0.28	7.0	-15	0.0		188	50	111	2	DWR
R. Finley domestic and irrigation	-1841	7-16-6;	;	63.1	2 2 2 2 3	22.00	4.23	1.04	1.t. 8 0.02 0.27	230	0.15	5 0.42	0.29	18	0.0		417	174	325	÷	DWR
L. O. Stren ir irrigati n	17N/4E-2 P	8=27=63	1	124	8.0	11 SF-1	11.13	36 1.57	2.5	154 00.	0.20	1.38	0.02	.18	2		274	ಜ್ಞ	125	(1)	DWR
Schohr Ranct.	188/1E-14R1	8-21-63	;	27B	8:1	1.05	1.31	15 50.00	3.1	7.91 GIOT.	指	1 0.11	0.0	. IE	0		210	23	118	0	DWR
R. Edward domestic and stock	18N/2E-12B1	7=16=63	;	28%	7.9	25 1.10	17.7	010	570.0	1,11 161	7 0.17	7 0.09	0.50	al a	0.1		161	18	126	0	DWR
F. Guidlel triputies	1-N/4E-21PI	7-12-63	:	26(1	7.9	1.20	113	0.748	0.6 0.0	0.0	87.0	0.17	0.16	12	1.0		182	17.	113	-7	DWB
West Count Orchards Irrigation	Wid:	7-12-63	:	0462	4	2 G	4.20	164 20.02	0.07	13 13	4 13.12	12 7.02	0.08	-]-2	5.5		1540	2 0	115	0	DWR
P. Ruc domesti	1)N/2E-16FI	8-51-63	:	33	7.7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	115 110 110 110 110 110 110 110 110 110	10.0	2003	9.00 H	13	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	3.4	-13	0.0		180	1.9	16	-	DWR
Butte County Roughtal	19N/4E-(P1	8-1-6	;	30%	8.0 0.8	25	17.30	13	1.02 0.1	0.00	e de la composition della comp	8.5°		7.1	0:0		219	52	124	0	DWR
R. Norhelm irrigaties	201/1E-41	8=4=63	1	404	8.1	5/16i	20.03	10.0	200	0.00	17 0.25	5 0.37	_	0.15	0.1		276	71	18,	17	DAR
Y. Payan learstic and lerivat a	on/oe-29R1	11-1-63	;	389	7.9	11.60	1700	100 A 100 A	10.0	0.00 2.92	8.7	8 0.79	0.00	0 8	0.0		245	रि	150	a a	DWR

Descrimentary adjustion of constituents
 Another determination
 Another determination
 Another determination
 Another determination
 Another determination
 Another determination
 Another determination
 Alumination (181), Areanic (As), Copper (Cu), Lead (Pb), Manganes (Ma), Zinc (Za), repaired here as \$600 except as shown

Owner and other number and other o	(Co) 14 (Co)	Calcium Magne -		_			,		,	equivalents per minima			0.0	Day	E dranes	_
NOBERM T-18-63 164 domestic Sprague Sp			(Na)	Patas- sium (K)	ate bo	Bicar Su bonate fa (HCO ₃)	Sul - Cr fate ri (SO ₄) ((C	Chia- ride (CI)	Ni- frote (ND ₃) (F)	Boron (B)	Silica (SiO ₂)	Silica (SiO ₂) Other constituented	eolved solids in ppm	t pos m m	as CaCO ₃ Total N.C. ppm	S Analyzed by c
### ### ##############################				BUTTE CON	NTY (: n'	nt.)										
Springue		14 9.0 0.70 0.74	0.22	2.4	0.00	1.57 0.05	35 0.04		0.5	0.0			103	13	72	., DWR
Yakich 21M/2B-3071 8-9-63 number of domestic and irr. Commestic and stock domestic and stock 21M/3B-10Q1 8-9-63 24V Mophina domestic and stock 22M/1B-3Q1 7-18-63 340 Collaban 22M/1B-3ZC1 7-18-63 230 Action of a stock 23M/1B-3ZC1 7-18-63 230 Action of a stock 23M/1B-3ZC1 7-18-63 205 Stringation 23M/1M-12A1 9-24-63 67 800 Irrigation 430 Irrigation 430 Morne Morne Morne Irrigation Irrigation <t< td=""><td>8.0 42</td><td>20.46</td><td>200</td><td>0.00</td><td>0.00</td><td>307 5.03 6.7</td><td>7 4.2 14 0.12</td><td></td><td>0.03</td><td>0.0</td><td></td><td></td><td>298</td><td>16</td><td>228</td><td>) DWR</td></t<>	8.0 42	20.46	200	0.00	0.00	307 5.03 6.7	7 4.2 14 0.12		0.03	0.0			298	16	228) DWR
Compton ClM/39-1041 Cl-63	7.6 49	1.23	0.61	9.0	0.00	3.72 50	113 01.37	7 588		0.0			390	10	788	8 DWR
	8.0 22 1.10	1.10 1.10	0.40	0.05	0.00	152 2.19 5.19	1.3 2.7 5.03 0.08	داب ۱۱۵۰	-78	0.0			201	15	2	O DWR
the of California C2N/2E-18/1 7-18-63 230 domestic and stock California C2N/1E-18/1 7-18-63 205 stock California C2N/1E-18/1 7-18-63 205 domestic and triggition C1N/1M-12A1 9-24-63 67 800 triggition C1N/1M-12A1 9-24-63 67 800 domestic and C1N/1M-12A1 9-24-63 67 800 domestic an	8.1 25	27 21 1.72	0.65	0.02	0.0	175 12 2.87 0.3	0.25		19 0.31 0.00	0.1	95		250	118	52	7 11
### ##################################	7.9 20	20 1.02 0.68	114	0.03	0.00	1.91	0.10		0.07 0.01	0.2	28		140	56	56	0 11
K. Barnes 23M/M-9Ll 7-16-63 410 domestic and trrigation 14M/M-12Al 9-24-63 67 800 mragation -18M1 9-24-63 67 800 domestic and domestic and trrigation -18M1 9-24-63 67 800 familin -31M1 9-25-63 67 500 trrigation -31M1 9-25-63 67 500 trrigation -31M1 9-25-63 67 500	8.0	16 0.80 0.58	0.65	0.0	0.00	87 1.43 0.	0.10		0.5)	1.0	24		168	Š.	69	9
Morac	8.2	27 26 1.83 2.14	0.52	0.03	0.00	3.42	10 4.6 0.40 0.13		0.42 0.110	0.0	2		305	21	85-1	27 02
Norman				COLUSA	COUNTR											
12 12 12 12 13 14 15 15 15 15 15 15 15	8.3 0.	17 0.83 1.32	7.05	0.00	2 37	375 16	0.33 2.50		0.01	9.0	12		536	11	107	- H
	8.2	0.86 0.90	68 5.95	0.9	0.00	3.90 0.	0.15 0.60		0.00	0.2	286		275	To the second	E.	1
200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.3	41 16 2.05 1.33	1.90	0.0	20.00	2.77	0.10 2.13		8.3 0.2	0.5	al		\$	유	169	27
(10)	8.5	34 32 1.68 2.62	64 2.80	0.0	0.30	4.70 41	41 0.86 0.95		10 0.4 0.16 0.0		8		707	£.	215	<u> </u>
P. Murphy 15M/WW-25Pl 9-25-63 900 8 domestic	3 6	42 2.15 2.12 2.15	145	0.0	0.30	314 5.15	2.01 2.85		0.00	75	16		642	\$	213	13
Shell 0il fo. 16M/LW-25Jl 9-24-63 360 8 Industrial	8.5 2.9	36 7.5 1.79 0.64	1.70	10.0	5.15	3.65	0.5 7.8		0.0	0.2	777		212	77	277	0
Watt Brothers 16N/2W-bH1 9-24-63 480 8	%	36 1.78 21 1.73	1.95	1.4	0.10	3.46	1.00 0.1	27.0 0.75	0.07 0.01	, y	28		316	0.1	175	2

b. Grownstric disembnolion.
 c. Annytals by U.S. Geologicol Surwy, Quolily of Woler Bonch (U.S.G.S.), Pocific Chemical Consultonite (PCC), Len Lebendory (L.L.),
Ten Annytals by U.S. Geologicol Surwy, Quolily of Woler Department of West Resources (On Pt 3 on Andrews)
 Terminal Felling Depotery (T.L.), and State Department of West Resources (U.W. Pt 3 on Andrews)
 Ten Depote (T.L.), Assisted (Eds., Copper (Col. Leaf Pb), Benganess (Min., Zinc'IX), reported here of 200, except as shown
and profiled (P.S. Edge)

Stots	-		S	Specific	-				M	arol con	Minarol constituents	ē	dovinge	ports per million equivolents per million	million er mill	00			Total		Hordoes	
number and other number		Date sompled	Temp in °F		H _d	Colcium Mo	Mogne - S	Sadium P	Dotos - C	Potas - Corbon-Bicor- sium ate bonate (K) (CO ₃) (HCO ₃)	Bicor- sonate HCO ₃)	Sul - fote (SO ₄)	- of (10)	hrote (NO ₃)	Fluo- ride (F)	50	Sio2) Other	(SiO ₂) Other constituents ^d	pevios polios un polios	Per Per	os CaCO ₃ Totel N.C.	Anolyzed by c
NDBAN								COLUM	TA COM	COLUSA CONTY (¢ nt.)	nt.)											_
TON/3W-9NI		9-54-63	:	8 065	9.0	2.02	21 22	2.50	0.3	0.00	20.02	0.40	1.87	0.02	0.02	0.2	97		364	40	188	0
1.7N/2W-12C1		9-24-63	;	1,30	5.8	35 22 1.75 1.	22 3	36	0.03	0.00	17.11.1	5.8	18 0.50	0.00	0.0	0.1	*		84.5	S,	178	0
17N/3W-33RL		9-24-63	:	0 %	2.8	20.02	25.61	5.05	0:03	0.08	5:23	2.08	25.52	0.04	0.2	5.0	H		909	59	275	
								- 51	UTTER	COUNTY												
11N/4E-9D1		6-14-63	19	350 7	7.8	33 157	1.21	19	2.10	0.00	2.83	0.30	21	0.0	00:00	0.1	41		550	22	144	277
12N/2E-9B2		6-4-63	19	639 8	60 Cr.		- 10	134	- 1-	0.00	867 1.38		62							82	99	O DWR
1	-11M1 6-	6-4-63	99	1270	0.8			250 10.88		0.00	267 4.38		7.64							88	121	o DWR
	-14B1 6.	6-4-63	59	432)	10°		-110	618 20.48		0.00	3.27		36.96							29	908	643 DWR
•	-16R1 6-	6-4-63	83	880	4. 00			21.7		14 41	417		62							11.	113	O DWR
	-2341 6.	6=4=63	99	466	8.1			188 8.18		0.00	270		16.1							85	75	O DWR
	-26A1 6-	6=4=63	1	1070	8.1			1.98 8.35		0.0	286		5.78							79	108	O DWR
12N/3E-26RL		6-13-63	99	890	2000	3.30	25.5	3.47	70.	0.00	3.07	0.17	201 5.67	0.0	0.00	0.2	27		612	37	294	111
13N/3E-1:M2		6-5-63	69	673	2, 2			8 1 S		0.00	346		1.24							-V	282	O DWR
	-1193 6	6-13-63	19	942	0.5			5.13		0.00	241 3.95		177							2.5	193	O DWR
	-1301 6	6-1)-63	19	356	6.2			2.26		9:00	3.24		0.65							3	111	O DWR
	-23#1 6	6-21-63	÷	1640	8.1	5.10	7.70	3.80	1.08	0.00	3.43	97.0	12.69	0.0	0.00	1.0	7		200	Ci	640 4	177

Discountivic destinationism.
 Anotyst by U.S. Geological Survey, Quality of Works Bonch (U.S.G.S.), Pocific Chemical Consultants (PCC), Len Lebestery (L.L.), a Anotyst by U.S. Geological Survey, Quality of Survey Chemical Consultants (PCC), Len Lebestery (L.L.), and Telephone (L. M. R.) and Chemical Survey, Quality (L. M. R.) and Chemical Survey, Quality (L. M. R.), and Chemical Survey, and Chemical Survey, Quality (L. M. R.), and Chemical Survey

TABLE E-1 (cont)

Analyzed by c

DWR DWH

T

DMR DWIS DWR DWR H

1

_	۹ .	-+								_								773
78.95		bbw		150		ş		1.0			107		2		100	E.		ω
		ppm		352	ಹ	4	8	~	1.1	170	÷	ä	55	6	100	949	226	526
į	E Sod	_		à	<u> </u>	33	-2°	8	577	10	x	5	•	18	å	19	0,7	a a
Total	epilos	ממ עו					242					240	376					
	Silica Other canstituents					_												
	Silica	120021		Ħ			Ħ					8	=1					
Ilan	5.	9		0.1			0.1					0.2	0.1					
million er mil	Fluo-			0.00			0.00					2.0	0.00					
parts per millian valents per mill	- in	(NO3)		0.03			0.08					0.00	0.00					
equivalents per million	OHO -	(C)		11 0.28	0.51	1.18	0.36	24	0.21	0.32	2.09	1.37	2.50	0.05	64	9.00	0.85	56
ڃ	Sul -	(804)		213			34.0 0.96					11 0.23	0.22					
Mineral constituents			int.)	3.50	1.75	2.97	2.31	5 1	1.74	5.75	2 Kg	3.35	3.15	2.26	7.28	5.11	2000	266
rol cor	orbon-	03,0	UNITY (0.14	0.00	0.00	3.3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	08	0.00
Min	Patas-Carbon- Bicar-	(K)	SULTER COU	0.00	010	010	0.03	010	310	310	010	0.02	75	ole	010	0.00	010	0,0
	Sadium		TIMS	1.65	25	1.87	1.87	16 0.70	0.48	204	59.0	3.50	2.17	0.41	35	3.00	43 1.67	81 0.18
	Mogne -	(BW)		3.94			0.05					1.25	30					
		(00)		3.11			27 1					1.12	37					
	F O	\dashv		8.8 21m	7.8	7.8	4.8	20,	0.8	8.3	7	0.8	4.8	7.9	8.3	7.8	8.	8. T
Specific	once (micro-	125°C)		7/40	241	579	- E	89,	500	283	171	3.5	635	152	977.3	1600	598	483
00.0	Temp (-0		3	69	200	99	26	89	89	99	69	1.9	62	59	69	1.9	62
	Date			6-5-63	6-5-63	6-13-63	6-5-63	5-5-63	6-13-63	6-6-6-3	6-6-63	6-6-63	5-31-63	6-13-63	6-13-63	0-13-65	6-13-63	6-17-6 3
Stote well	nymber and other number		MDBAM	13N/4E-21A1	13N/4E-23Q1	13N/5E-7R3	yR1	-10R2	-3.15L	UM/IE-IAI	-2A1	-24M	14N/3E-3C2	-1452	-1511	-16BE	-1842	7M62-
	Dwner and			C. M. Owen irrigati n	J. E. Jopson Arrigati n	C. F. Nelson irrigati n	California Packing C. irrigation	E. J. Ga legher irrigatin	West Ranch Irrigatian	Fry Brother	S. A. McKeehn longstic	T. Barkhause lomestic	B. Singh irrigati n	I. Littley dun domestic and irrigati n	J. A. Blevin.	5. E. Best d metti and irrigation	H. Mahon irrigation	Sullivan Bantu irrigati n

DWR DWR DWR

DWR

DWR

Э

o Determined by addition of constituents.

b Grownerin: determination.

b Grownerin: determination.

b Grownerin: determination.

c Landyst by US Geological Survey, Quality of Water Branch (US GS), Pacific Chemical Consultants (PCC), Lein Laboratory (L.L.), Lein Laborat

	Anolyzed by c		DAR	3	217	13	13	3	DWR	112		3	773	13	73	777	3	3
			410	387	203	0	102	148	=	**		19	2		Ē.	9	ž	-9
Hardness	as CaC Tatal ppm		515	540	395	339	354	413	1177	118		191	-115	9,0	3	5	106	£
- L	Food in		8	52	18	1.3	Ħ	52	1,7	4.		63	ž.	39	-,2	1.7	14.0	15
Total	solids solids in ppm			806	528	450	586	51,72		800		636	· .	180	170	181	316	250
	Silica Other constituented																	
	Sifica (SiO ₂)			3	20	1/1/2	12.1	7.11		5		7	F.	링	3	3	킾	쾨
Hon	Baron (B)			::0	0.1	0.1	7.0	0,1		1.0		3	0.1	7.5	0		17.0	0.1
per m	Fluo- ride (F)			0.0	0.00	0.00	0,01	0.00		0.1		0.00	0.0	0.00	0.0	2.00	00:00	0.00
equivalents per million	rrate (NO ₃)			0.0	0.00	3.4	0.98	181		0.29		0.01	0.1	0.0	0.0	0.00	0.07	6.0
vinbe	Chlo- ride (CE)		25.50 25.50 25.50	11.57	2.81	0.48	2.60	67.75	91.6	0.7		916	0, ,0	0.10	0.35	0.37	2.45	1.55
u e	Sul - fate (SO ₄)			6.8	8.1	2-7 0.11	1.00	2.4.5		27.0		24 0.51	1.05	0.10	1:10	97.5	14 0.:8	0.23
Mineral constituents	Potas - Carbon Bicar sium ate bonate (K) (CO ₃) (HCO ₃)	.nt.)	4.10	3.00	\$169. 2.69.	300	4.63	1	3.49	2.30		9 E	1,00	1.6	15:	1.65	54	E 10:1
eral co	arbon- ate (CO ₃)	(c) XII	0.00	0.00	0.00	0.85 0.87	0.40	0.00	0.00	0.00	TIMOS	0.00	0.00	0.00	100	0.00	0.00	0.00
Min	Sium (K)	SHUTTER COLUMN (G	54.5	70.0	5/6	200	0.03	0.04		0.02	YUDA	0.00	0.00	0.03	8.00	0.07	1.5	0.03
	Sadium (No)	201	3.01	5,50	1.75	1.05	2.80	1.43	20.04	67.0		5.30	1.10	06.0	0.65	1.05	2,10	1.75
	Magne- eium (Mg)			12.	5	200	10.	100		1.15		B4.0	1000	0.80	0.67	200	0.83	0.50
	Colcium A			3.012	2 E	315	4.1 2.05	1		200		2,40	60.17	0.60	07.70	0.71	8 1 3	51 11 12
	F		80	8.23	00	-?. -2. -2.	4.8	34 30		7.7		50		ž.	6.	2	7.7	0, %
Spacific canduct-	(mlcro- mhos at 25° C)		Litter	1390	916	040	910	910	1296	668		91.1	480	10.45	0.02	220	lgro	340
0) 0	Temp in °F		3	50	Jo	1.9	3	\$	5	2,1		1	;	;	;	;	;	:
	Sampled		6-10-63	6-6-63	6-10-63	6-6-63	6-6-63	819-9-9	6-10-63	6=11=63		7-13-63	7-23-63	7-23-63	(-18'=0.5	7-18-63	f-18-63	7-18-63
State well	number and other number	MDIMM	14N/3E-28R1	-330	H££-	15N/1F-16R1	15N/2E-26D?	15N/3B-4C2	-SOM1	10N/3E-4E1		3N/5E-ltB2	14N/4E-7M1	*.5'R1	14N/5E-15C1	-1661	-2101	1872-
	Owner and		J. Serger Irrigati	irrigati n	Mayfair Dacking Co.	V. Fleth dementic and irrigation	E. L. Carratheru	A. Enger	R. Palllex irrigation	R. Albert		City of Wentland municipal	E. Antheny domentic	F. Hofman irrigation	Berge Brothern irrigation	Stuza Br thero irrigation	Waltz Bunch irrigation	S. R. Johnson ierigation

b. discountific distriction between Committee of Walter Broads (U.S.G.S.), Pocific Chemical Consultante (PCC), Lein Lebenbey (L.L.),
 c. Analystal by U.S. Geologicol Survey, Quality of Valor Objection of March 18 in Securation (No. 12 of Valor Objective) (No. 12 of Valor Objective)
 d. Terminal States (December 18), Lead (No. 12 of Valor Objective)
 d. Terminal Committee of Valor Objective (No. 12 of Valor Objective)
 d. Terminal Committee of Valor Objective (No. 12 of Valor Objective)
 d. Terminal Committee of Valor Objective (No. 12 of Valor Objective)

ANALYSES OF GROUND WATER TABLE E-1 (cont)

	D	_																
	Analyzed by c			3	1	3	Э	T	73	3		DMR	DWK	DAR	DMR	DAIR	DMR	DWR
Hordness	Z 0.	mdd		_	01	135	0 -			.0		C	0			_	1:	27
Hord	Total	mdd		5	160	334	100 100	11	103	78		89	3	801	弋	~_	1/3	3
Pa -	fuent fuent			82	91	71.7	16	- co	Ž.	77		24	-1	25	2	9	5.	3
Totol	solved			79p	435	708	294	16 -	217	152		350	1,74	301	75	187	22	T
	Silica Other canstituentsd																	
				56	*	27	Ħ	98	S	07								
High	Boron (B)			0.0	0.0	7.0	0.0	0.0	7.0	0.0		0.0	0.0	0.0	6.0	0.1	0.1	4,0
Br mi	Fiuo-	E		1.00	0.1	0.00	0.00	0.0	0.00	0.00								
equivalents per million	- in	(NO ₃)		0.10	5 E	0.03	0.10	6.3	0.0	0.34		20.0	0.17	0.17	0.02	0.14	500.00	0.07
equiva	Chla-	(CI)		1.75	0.13	31.2	02.50	0.15	0.30	0.35		100	F. C	0.82	0.28	0.26	2.52	.26
٥	Sui -	(204)		0.17	37 0.77	0,08	8.2	0.10	2.9	20.0		1.8	0.00	0.12	0.05	46.	36:1	1870 1870
Mineral canstituents	Bicar-	- 1	nt.)	105 8	25.57	2.84	266	2.38	2,1/2	1.39		2.31	1.46	3.08	2.50	963	2.42	1.33
ol cans	te bon-	O3.)	7 (Co	0.00	0.00	0.00	0.00	000	3.0	0.00	COUNTY	0.00	©100 00:00	00.0	의 (B) (B) (B) (B) (B) (B) (B) (B) (B) (B)	81.1	0.00	0.00
Miner	Potas-Carbon- sium ate	(X)	COLISA COUNTY (Cont.)	0.0	0.03	0.0	0.03	00.04	2.3	0.01	IACER C	0.03	0.02	01.0	4.0	200 200 200 200 200 200 200 200 200 200	000	9.10
	Sadium Pe	(0)	- El	1.75	0.00	5.20	0,00	0.57	20 20	0.57		1.30	0.74	77.1	36:0	0.87	100 p	2.70
	Magne -	$\overline{}$		200	23	2 .20	86. S	1.08	7.8	0.75		0.73	0.50	1.61	2.5	7.4	1.61	0.81
	Calcium	رو		24	27	90	36	23	28	0.81		1:0:1	00.00	1.55	1.10	0.55	1.25	1.05
υ ±	표	6		7.9	8.2	7.7	8.1	φ. α.	g. 3	7.8		8.0	7.9	7.8	8.0	7.7	7.8	7.8
Specific conduct-	(micra-	at 25°		360	350	1160	1430	Stu	255	205		312	190	435	27.5	203	736	515
	Temp F ° F			t	1	1	;	1	1	1		1	;	1	1	;	1	;
	Date sampled			7-18-63	7-23-63	7-19-63	7-19-63	7-19-63	7-19-63	7-18-63		8-7-63	8-7-63	8-7-63	8-7-63	8-7-63	8-7-63	8-7-63
Stats well	number and ather number		MDDSM	14N/5E-301	15N/4E-2011	16N/3E-11N1	-11172	-23B1	-2691	16N/4E~9Dl		10N/5E-6D1	10M/62-5C	10M/6E-10D	11N/6E-34B	12N/5E-23P1	12N/6E-16D2	13N/5E-13D
	Owner and			E. Garcia irrigation	Linda Water Co.	LaFinca Orchards Co.	M. Kaine irrigation	H. Keeler domestic and irrigation	LaFinca Orchards Co.	J. Rabel domestic		K. Teracku irrigation	A. Lampen domestic and irrigation	R. L. Dixon domestic and irrigation	Sierra View Land Co.	U. S. Air Force industrial	F. W. Fullerton domestic and irrigation	G. Blake domestic

o Determined by addition of constituents.

b. Grownerist elementics.

b. Grownerist elementics.

c. Endistrict U.S. Golden On Only of Worst Booch. (U.S.S.), Positic Chemical Consultors (PCC.), Lein Laboratory (L.L.),

c. Analysis by U.S. Golden Only of Worst Properties of Wiley Responses (D.W. P. os indicated P. C.).

d. Iran (Fa), Alamahan (La), Astanic (La), Copes (Desperiment of Pb), Mangonese (Mn), Zinc (Zn), tripated here as \$0.00 except as shown in rins (Fa), Alamahan (La), Astanic (La), Copes (Copes (Desperiment)). Mangonese (Mn), Zinc (Zn), tripated here as \$0.00 except as shown in rins (Fa), Alamahan (La), Astanic (La), Copes (Desperiment).

Analyzed by c DMR DWR DAR DWR DWR DWR DWR DWR DWR DWR DWR 13 Н Н 7 113 Hardness as CaCO, N.C. Tatai 211 108 398 224 Per-8 37 33 7 Total dis-eolved salids in ppm constituents Silico Other c 22 H 33 Boron (B) 7 1:0 0.1 2.0 9.0 1.5 equivalents per million parts per millian Flug-ride (F) 0.0 2.2 4.00 rrate (NO₃) 15 6.8 132 - ole (C.C.) No. Sul -fate (SO_a) 25 B(1) 3.1 2 Mineral canstituents sium ate banate (K) (CO₃) (HCO₃) 274 3.72 388 354 3.30 PACER COUNTY 9.5 0.0 12. 0.00 0.00 1.3 0.0 1.5 Sadium (No) 8 69 214.5 3.40 Magne-sium (Mg) 36.2 51 7.09 68 Colcium (Ca) ---34 2.32 33 200 98 핌 Specific conduct-ance (micro-mhas 576 Temp in °F Date sampled -19M2 State well number and ather number 3N/CE-+3C 2E-13F2 E- 41 6N, 3E-25Al SN/LE-3BL MDB844 /N/ . MC Anjers u & Srebrek Lumestic Will whank r., lestiran rrightin Rice Growers Asr industr al pup Francesch irrigati n C. Hemel Irrigat.un W. Holge irrigati n K. Howalt irrigation Glise Ranch Owner o Sakata

Memmende by addition of constituents
Government of determination
Government of determination
Observation of the state of the constituent of the co

176

	Analyzed by c	T		ps .		E	DWR	DWR	TR.	8	DWR	DWR	E	DWR	DWR	DWR	DWR	DWR	DWR
		1		O DWR	0	O DWR		Ma	DWR	DWR			O DWR	Ma .	8 DM		O C	0	
Hardness	\$00°2	E dd					162			34	877	518				27			310
		Edd		303	213	205	349	520	216	318	378	999	203	178	285	326	195	ĥ	ī,
<u>à</u>	. B & E	+		æ,	348 34	355 40	1070 58	148	14	25	643 35	33	33	301 35	95 229	536 34	109	65	77
Ĕ,	solved solved	- 1			m .	m -	10				9			m 	9	15	×		
	Silica (SiO ₂) Other canatituented																		
					100	24	2				8			771	ਨ		œ.		
Hion	Boron (B)	_		2.3	1.6	1.9	1.7	8,0	6.0	1.8	1.2	1,1	1.5	27	5.7	0.5	5.9	1:1	1.5
equivalents per million	- apt				0.00	0.5	00.0				0.03			200	0.0	0.03	4.0 0.0		
lente	trate	(NO 3)			5.0	9.0	0.3				3.4			4.5	0.05	0.34	1.34		
DAIND	Chlo	(C)		73	51 1.43	0.93	12.92	3.07	2.12	1.06	2.17	386	50	14	3.78	2.99	2.54	200 100 100 100 100 100 100 100 100 100	274 7 · 73
'n	Sul -	(804)			0.32	2.58	6.4				2.56			113 0.27	2.00	0.90	38		
Mineral constituents	- car-	75.03	~	395	272 4.46	313	3.74 3.74	3.20	274 1.49	346	6.59	2.95	264	282	338	335	328	101	3.82
cons	oon Bi	3.	(Cont.)	0.00	6.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	010	0.0	0.00	0.0
Minera	Potos-Carbon- Bicar-	<u></u>	COUNTY (Co.	ölö	1.8 6.0	0.05	6.2 0.	olo	olo	olo	0.08	00	cló	0.03	2.9 0.07	0.03	2.7	olo	ીંં
	Pot Sie	÷	YOLD C		-ilo	40	900				ીં			alo	പ്		alo	to	
	Sodium (No)			87 3.78	<u>51</u> 2.20	63	223 9.70	106	3.83	1,8 2.00	4.09	154	1.36	1.96	133 5.78	3.44	5.92	262	7.09
	Magne-	GW)			3.08	30	33				5.01			30	1.69	5.41	2.55		
	Colcium	- 1			24	32	4.24				2.54			21	200	1.10	1.35		
	£			8.3	8.3	5.5	7.9	8.3	0.0	8.3	00 01	8.1	ω 	8:1	0,0	60	8,0	. e	0.0
Specific conduct-		125°C		906	2960	627	1800	932	807	164	1050	1960	572	664	1100	954	986	1740	1680
y c	Temp In of	٦		72	70	13	2	;	2	72	1	70	;	70	1	77	;	:	1
	Dota			6-25-63	7-10-63	7-29-63	7-23-63	6-25-63	6-25-63	7-12-63	6-25-63	7-1-63	7-1-63	6-27-63	6-25-63	6-27-63	6-27-63	6-27-63	6-27-63
State well	number and other number		MDB&M	9N/lE-12Al	9N/2E-10D1	9N/3E-7D2	9N/4E-33L1	9N/1W-16B1	-3011	10N/1E-1C1	-1501	10N/2E-101	-27H1	low/lw-4Dl	-36K2	131-W5/NO1	-1732	-18F1	-18F2
	Owner and			Dumars irrigation	R. Stactmueller irrigation	Woodland Farms irrigation	Raikes	Dumars domestic	Charman Brothers irrigation	Scarlett & Owens irrigation	N. Corcoran domestic	W. K. Lowe domestic	City of Woodland domestic	C. Davis irrigation	Ferro & Canepa irrigation	J. Peterson domestic and irr.	J. H ward	E. S. Williams domestic	W. W. McClary domestic and irrigation

a Determined by addition of constituents.

De Gomentre Cereminal Constituents.

English of Constituents (September 1994) and the Constituents (PCC), Lein Lebandium (LL.),

English of September 1994, CTLL of Observant of September of Respects (D.M.F. on Industrial Petrol of September 1994).

G. Iron (Fa), Aluminum (Al), Arsanic (As), Coper (Cu), Lead (Pb), Mongoness (Mn), Zinc (Zn), reported here as <u>Goo</u>s xcept as shown

TABLE E-1 (cont)
ANALYSES OF GROUND WATER

11M/18-481		Store well			Specific				Min	rol con	Mineral constituents	=	ports per million equivolents per million	ports per million volents per milli	million er mill	ion		Totol		lordnes		
100/10-3004 100/10-3014	Owner ond	other number	Sompled	Temp in °F	once (micro- mhos ot 25° C)	¥	(Co)	Sadium (No)	Potos - slum (K)	orbon- E ate b CO ₃) (t	Sicar- onate 1CO s)	Sur - fate (SO ₄)		hrote (NO ₃)	Flua- ride (F)	Boron (B)	SiO ₂) Other can	 evios pevios politos in ppm	to on the contract of the cont			lyzed y c
10/20-301 10-2		MI ISSM						X010X	COUNT													
The control Control	V. Wilton	10/2W-18I,1	62-7-63	2		z.		調	010		p 9	with.	Z 50			0.0			5			H.
1107/19-301 1-1	C. A. Kutnard:		5-3-Jul-9	17		2.		0.1	010		88	-10	0 8			0.5				16		Ĕ
136/1902 1841 124/1902 1841 124/1902 1842 124/	b . blf.s.r	11N/1E-hR1		·.				 75	10.0				β. Ωξ.				회	 6.41	9		-	AR.
Hard Street The Property The P	d. d. Chweet	-17041	(-1-1-)	ž.		8.3		1.57	-10	11-5	48	140	- 6			9.0				=		W.Y.
THE PROPERTY Control of the cont	D. Millor des the	11N/-E-1 9A1	7-1-63	12.	L(Mg	5.5		200	710	-7/2	2/4	COLO	100			6.1					-	- X
118/64-541	W. H. Kimelshue irright!;	D.5 -	(+T-03	3		:J-		2:70	-1-				25			7	a	100		-		1/4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	O. Dur t	11N/-W-5511	6-47-63	-9	7.5	×. ×.		a [2	ole		2 kg	-10	1,53							1	-	48
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1111/54+1421	6-44-0	2	701				(15:	7.6 0.57		9"0	4	 1,000	ē.	ĮĒ.		AN AN
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	H. D. Everett Irrigation	-10E	6-58-63	=				 4:					0			χ.	4	 cylen		6		E E
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4. Kn lle irriputi	-56M·	7-,-(3	**			-	 9 3	7 .	19.			<u></u>			2	14.	 h	**	· ·		WR
. 18/ N=M1 (2-10-4) - 1 (10) N=M1 (2-10-4) - 1 (10) N=M1 (2-10-4) N=M1 (Bouthern Pacific	1,78/1W+15M.	f=18+6:1	:	ř.	77		0.74			#(6)	10	8 C.T.						3	· J		WB.
- # 18 #8/98-1487 Transmer - # 11 # 8-5 #2 #2 #2 #2 #2 #2 #2 #2 #2 #2 #2 #2 #2	M. Dabelne	1 N/ 9-JA1	(-16-d)	:	388	77.		11.	40		Ro	-111	897			0.8	_	 				MR
- # 1									CHAMPIL	S CHIME	늰											
$\frac{1}{2} \left(\frac{1}{2} \right) \right) \right) \right) \right)}{1} \right) \right)}{1} \right) \right)} \right)} \right)} \right)} \right)} \right)} \right)} \right)} \right)}$	Reclamath n Dist. #3	hN/ 5E-1hF1	10-27-63	1				 10 C					1 E			1	9	 Copor Copor	8	3	5	-1
$\frac{1}{12} - \frac{1}{12} $	Wilmar Land C . drains	Zin .	10-2"1-115	89	-	2.7		 15.0					45			5.	41:		ο ₁			rā
	G. Rarl to	2,		1	=			 100					15			:	7		ξ	4		1

a Defermined by addition of constituents
b Assuments determined by additional to the constituents (BCC.), Lein Labanson (L.L.),
b Assuments determined by Average Apostory Questive Wester Berach (US.S.), Pacific Chamical Canaditants (BCC.), Lein Labanson (L.L.),
i remain Testing Labansons (T.T.L.) as State Oppositional of Worter Beraches (D.M.), Zinc (Z.A.), particular face as \$600 except as shown
d. Iron (Fe), Aluminum (Al), Arsanic (As), Cappar (CD), Lead (Pb), Mangonese (Mn), Zinc (Z.A.), sparida face as \$600 except as shown

	2																		-
	Anolyzed by c		금	3	3	뒴	13	77	3	13	긤	3	Ħ	Ħ	13	13	13	13	
Hardness	N.C. ppm		-	3	٥	-	X.		_	0	0	77	20	0	0	0	0	0	
	1 1		82	3	91	25	5,7	85	98	147	£	151	22	102	277	181	11.7	69	
ď	Topos u		32	Ę,	52	7/2	56	£	31	12	33	07	24	36	35	20	38	52	
Total	mdd ui		100	52	222	h28	138	134	106	360	172	446	182	200	482	126	564	130	
	Silica (SiO ₂) Other constituents ^d																		
			0.7	92	23	5	S	:3	2	4	23	24	74	82	H	Si	됬	147	
Light	Boran (B)		0.1	0.0	0.1	8.0	0.0	0.1	0.0	0.1	0.0	0.0	0.1	0.1	0	4.0	5.0	0.0	
millia Ser mi	Flug- ride		1.0	0.10	0.1	0.2	0.2	0.00	0.00	0.00	0.0	0.1 0.00	0.2	0.00	0.00	0.00	0.00	0.00	
ports per mititan equivalents per millian	rrate (NO ₃)		0.00	0.9	4.3	0.0	11 0.18	0.0	0.0	6.4	3.0	0.00	0.0	0.03	6.4	0.00	000	0.08	ĺ
pyinbe	Chia- ride (CI)		7.4	0.35	0.23	4.3	0.30	0.10	91 0.46	9.6	6.0	30 0.84	0.49	118	31.0	3.59	1.32	0.12	
ts in	Sul - fore (SO ₄)		4.3	2.4	77	126	2.9	0.02	4.8 0.10	8.c 0.18	5.8	8.6	36	8	1.08	6.7	8.6	0.10	
Mineral constituents	Carbon-Bicar- ate banate (CO ₃) (HCO ₃)	(Cont.)	2.77	1.36	2.34	2.13	56 0.91	121	071	3.24	126 2.07	2.94	69.0	138	371	3.42	2.33	81	
nerdic	Potas-Carbon-ti sium ate (K) (CO ₃) (ZENDO	0.0	0.0	0.00	0.0	0.0	0.00	0.0	0.38	0.00	0.0	00.0	7.8	16	12	0.0	0.0	
×	Potas- sium (K)	DUNTO	1.5	0.04	0.2	7.5	2.9 0.07	0.00	20.0	0.05	0.13	0.11	0.03	0.05	0.00	5.3	3.2	0.0	
	Sadium (No)	SACRARD	25	0.75	23	1004	2,50	4.0	0.83	276 1+13	18	0.80	0.83	27	5.00	3.70	35	0.31	
	Magne - e:um (Mg)		0.86	0.58	11.0	3.5	0.50	0.82	0.71	1.29	0.85	1.10	5.6	11 0.93	38.12	22	13	7.8	
	Calcium (Ca)		1.11	0.56	0.0	11. 0.58	12 0.58	0.89	1.07	1.06	0.76	1.92	0.65	25	2.43	37.	1.19	13 0.67	
	Ŧ		8.0	7.7	ω εν	7.6	7.0	80	63.53	5	8.2	:0 :0	7.9	8.5	4.8	8.5	0.0	7.9	
Specific conduct-	ance (micro- mhos at 25° C)		265	1.75	248	570	145	191	552	099	220	355	191	295	569	720	365	157	
	Temp in °F		1	:	99	1	1	200	119	;	19	59	64	1	1	1	1	1	
	Sampled		10-23-63	10-4-63	8-2-63	10-24-63	17-17-63	4-43-63	7-25-63	10-23-63	7-25-63	7-25-63	7-25-63	8-7-63	8-6-63	7-24-63	7-24-63	8-28-63	
State well	number and other number		5N/5E-3F1	5N/TE-TE2	PN/6E-2'J1	6N/TE-23A1	6N/8E-15J1	7N/4E-4R1	7N/5E-7C1	-3272	7N/6E-22R2	8N/5E-15H1	8N/8E-29K1	9N/4E-1R1	-817	-27F1	9N/5E-21El	9N/TE-32B1	
	Owner and		J. There's	L. A. Bale lomestic and irrigation	Hart Ranch irrigation	R. C. Whittemore irrigation	F. J. Questi domentic	M. Perry irrigation	State of California domestic	H. Sutter irrigation	W. Mouser domestir	State of California domestic	E. Pilliken domestic	Hoffart irrigati n	K. Kimura irripati m	L. M. Swalley irrigation	Citizens Utilities Co. municipal	J. A. Rodgers domestic	

ANALYSES OF GROUND WATER TABLE E-1 (cont)

S-7-4-63 65 5-21-63 67 5-21-63 67 5-21-63 67 5-21-63 65 6-6-63 65 6-6-63 65 6-6-63 65 6-6-63 65 7-3-63 72		State well			Spacific conduct-					Mine	Mineral constituents	fituents	ri .	equivolents per million	parts per million volents per mill	millia	E		Total	à		15 80	
Note Section		other number	Dofs sampled	Temp In *F	ance (micra- mhos at 25° C)	F	(Ca)			otas-Cc Sium (K)	orbon Bi ate bo				NI- rrate NO ₃)	- e (-	oron (B)	lica iiO ₂) Other constituents		Per			Analyzed by c
The control of the		MDF42M							SACRARE	NTO GO	UNIX (Co	ont.)											
Sign Sign Sign Sign Sign Sign Sign Sign	pr	10N/ F.E-27L	8-11-63	:		8.2												-	242		130	0	13
1487 1487									জা	OLANO	COUNTY												
Signature Sign	lota	4N/3E-31F2	5-21-63	;		8.3		-160	150			S 18	1-164							73	124	0	DWR
4,4/22-55K 5-21-63 6-3		SN/1E-1N1	5-21-63	8														87	1300		353	0	념
64/12-19/12 5-21-63	scking	5N/2E-25K	5-21-63	63	1510	8.3		ार	2.83			2 E	813	95						159	364	0	DWR
CALVA-21. S-21-63 CF CF CF CF CF CF CF C	District	6N/1E-1912	5-17-63	1	109	8.2		Ma	Z 87.			59.	800	25		_				37	214	0	DWR
	ville	-1%1	5-21-63	1	620													<u>a</u>	356		187	12	13
This called by the called by	/111e	6N/14-23L	5-21-63	19	265	8.2		ırda	91:			8/8	_ଆ-	37						35	200	0	DWR
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6N/ZE-20H2	6-9-9	69	154	8.2		Olv	.87			m (6)	원성	건						27	393	58	DWR
INVIET-00PT 6-6-65 6-6-6		TN/1E-3601	6-6-63	59	466	7.80		-		9.05								75	h29		787	0	긤
1M/48-311 8-5-65 65 120/0 8-10 144 20 2-10 2-10 0-10 8-2	-	6N/1E-26F1	6-6-63	93	L29	8.3		MI	148			3/80	910	45						21	287	3	DWR
1M/4E-501 6-5 12-9 6-5 12-9 8-0 144									SAN JDA	AUIN A	WITEK (2-80											
14/48-911 8-3-65 65 12-90 84.0 12-0 12-0 12-0 12-0 12-0 12-0 12-0 12-									SAR	JONOL	TN COUNT	≻ I		_									
11/(8E-101) (9-3-63) 72 (607 B.1) (100 B.1) (1	ir rala	1N/4E-301	8-5-63	59	0521					92					7.1		5.1		Ē	99 1			DWR
-10P1 9-9-63 72 3180 8.1 130 6.50 5.14 17-00 2.04 0.00 2.07 0.10 2.07 0.00 2.05 0.00 2.00 0.00 0.00 0.00 0.00	ater	IN/6E-4D1	9+3-63	72	T09	Σ.		~1 <i>2</i>	8 2			.52	60 ni	150						8		0	DWR
	r lucts	-10P1	69-6-6	72	3180	8.1				2.6					9.00		0.1		1140	09		459	DWR

a Distrimina by deadlines of constituents
b General Charles and Constituents
b General Charles Constituents
b General Charles Constituents
b General Charles Constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
constituents
cons

ANALYSES OF GROUND WATER TABLE E-1 (cont)

	State well			Spacific					Min	Mineral canstituents	stituents	Ē	par	parts per million equivalents per million	million			Total			888	
Owner and use	number and other number	Date	Ten Ten Ten	ance (micro- mhos at 25°C)	Ĭ.	Calcium (Ca)	Magne - s.um (Mg)	Sadium (Na)	Patas - Carbon- sium ate (K) (CO ₃)	ate b	Bicar- bonate (HCO ₃)	Sul - fate (SO ₄)	Chlo- rids (Cl)	Ni- trate (NO ₃)	Flug-Bo	Boran Sili (B) (Si	Silica Other constituents ^d	solved sod- solids ium in ppm		Tatal Ppm		Analyzed by c
								SAN JOAQUIN		OUNTY (Cont.	(out.)											
Calif-rnia Water Service municipal	1N/6E-14H1	8-12-63	72	587	8. S.	0.90	6.6	4.18	0.05	0.00	3.10	0.00	88	410.0	OI .	T-0		378	1,2	72	0	DAR
Slang irrigation	1N/9E-18G1	8-13-63	89	197	7 · 7			13		0.00	81 1.33	9/0	9.5 0.27						200	99	-	DWR
California Water Service municipal	2N/6E-27Ll	8-12-63	67	343	6.7			31		0.00	2.95	010	9.6 0.27						ф0	100	0	DWR
L. Dentoni irrigation	2N/TE-14N1	8-2-63	8	315	8.3	1.70	0.84	15	5.3	0.00	2.97	2.8	5.0	0.04	01	0.0		1,4	50	127	0	DWR
Linden Water Service irrigation	2N/8E-15L1	7-30-63	69	221	7.9			0.56		0.00	1.97	40	0.11						55	382	0	DWR
F. DeBenedett1 domest1c and irrigation	2N/9E-7G1	7-30-63	99	569	7.9			10.0		0.00	2.21	ોંં	6.19						1.7	111	pol	DWR
Davis irrigation	3N/8E-8E1	8-20-63	69	174	7.7	0.60	0.38	0.70	2.6	0.00	1.24	0.02	8.8	6.4	-1	C.		172	0-7	64	J	DWH
M. T. Co-op domestic	4N/4E-14C1	8-2-63	17	1020	7.7	-		163		0.0	3.74	مالت	2 <u>12</u> 5.98						%	59	0	DWR
W. Southern irrigation	4N/5E-8H1	8-2-63	62	9440	6.7	284	221 18.20	512 22.27	3.5	0.0	2.90	0.0	180×1	0.03	OI .	8.0		2880	777	1020	1480	DWR
Jahant Ranch domestic	4N/6E-11Pl	8-2-63	99	550	7.8			<u>त</u> १,५८		0.0	11.93	M3	5.6						22	85	C	DWR
K. Elston domestic and irrigation	4N/TE-23B3	8-2-63	69	471	6.9	1.90	1.46	1.17	0.06	0.00	3.08	3.4 44.0	1.24	0.16		0.0		312	52	168	17	DWR
R. Nichols irrigation	5N/5E-33Jl	8-2-63	19	371	0.8			2.57		0.0	3.56	545	2.5 0.27						5	65	2	DWR
A. T. Sims irrigation	5N/8E-31J1	8-2-63	70	182	7.4			14,		0.00	89,	Mo	5.8						37	ş	ō	DWR
California Packing Corporation domestic	1S/4E-14M1	8-5-63	96	1500	8.3			10.37		0.00	259	215	183 5.16						Ž.	140	0	DWR
L. Brooks domestic	1S/5E-10H2	8-5-63	70	1380	8.3	£ 61.1	3.30	5.44	2. S	C.00	06.4	1.58	7.5	0.0	-	0.2		808	0.17	405	ng ng	DWR
															-	1			1			

National Stadium Pales Chross Pales Sale Chross Pales Sale Chross Pales Chross				<u>0, 0</u>	Spacific conduct-				2	Ainerai	Mineral canstifuents	ol sto	yinbe	equivalents per million	million ier milli	ug.		Į,	- i	Hardnese	
3.1 0.00 1.75 0.00 0	pH Calcium (Ca)	Temp ance pH Calcium mhas (Ca)	(mlcro- mhas (Ca)	pH Calcium (Ca)	Calcium (Ca)		- au (a	Sadii (Na		Carbor ate	Bicar- banate (HCO ₃)			rate (NO ₃)	Flug- ride (F)	Boron S (B)	SiO ₂) Other canetituen		P S E	N.C.	Anolys by c
1.1 0.00 1.7 1.1								SAM	JON SERVICE		f (Cont.	~									
1.0 1.0	15/68-4A1 8-5-63 68 1980 7-4 166 50	68 1980 7.4 160	1980 7.4 160	7.4 160	7.30								52:0 14:68	0.00		2.0		- T			DWR
1.0 1.0	$15/7E \pm 0M$ 8-5-63 66 27^{4} 8.0 $\frac{e^{4}}{1.3^{2}}$ $\frac{7}{6}$	66 27h 8.0 2h	27h 8.0 2h	8.0 24	1.20		m.					0.16	0.34	57		0.1		60		 	DWR
15	15/9E-8H1 8-2-63 To 228 7.7	70 228	228		L.			16 0.70		0.0			12						33		DAR
13th 3.0 0.00 2.50 3.50 0.00 0.35 0.00 0.35 0.25 0.00 0.35 0	25/hg-1P1 7-0h-63 74 635 8.0 29	74 635 8.0	635 8.0	8.0		3	200					150 17:5	1.38	07.0		200		ň		 	DWR
18	28/38-22Q1 7-31-63 70 1390 8.0 71 3.54	70 1390 B.0	1390 B.D	£ .		K	800					169	240 6.77	200		1.4		ac			DWB
1882 1900	-23PL 7-31-63 64 1990 7.9 119, 5.74	64 1990 7.9	1990 7.9	7.9	5.74	12	53					4.93	348	33.0		0.0					DMB
1, 2, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	-cobt 7-24-63 (66 2030 7-9	060 2030	2030		·			182		0.0			314			1.5					DWR
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	28/08-035 7-20-63 72 1180 8.0 54 (7-0)	72 1180 8.0	1180 8.0	8.0	0. 27.69	-\3	201					3/2	5.50	0.03		970		-			DWR
1,000 1,00	68/78-2011 7-26-63 6) 559 8-1 54	6) 5g 8.t	5.92 8.1	ž.	₹[8] - ₹	18						0.5	120	32,		0.1		<u></u>			DWR
11	35/5E-8th 7-31-63 56 7.7	3.	3		•		22.5	Jos	0.0		1.5	2.93				6.0			39	 	DWR
11h	-14D1 (-51-63 0.8 1500 8.0 0.5	0.8 15°0 8.0	15'0 8.0	8.0		13						#	2.70	0.72		5:0		œ			DWR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-26M 7-31-64 1750 8.L	1950	1250		7.			1114		0.00			5 16:1			1,0			38		DMR
1.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00	Hunta Carbian Ir. Diat, $g/d\theta$ -TP1 T-26-63 α 1850 (.9 $\frac{13}{5.65}$	(c) 1000 (c)	15.0 (**)	r)		E						204	318	.3 3.3		0.5		11	10 56		DWR
	-c. q1 7-26-63 77 695 1.2	77 695	695		~			19.°		10			36			9.6					DWR

b. Growmetric defamination.

• Motivate by U.S. dealer ministen consistent of the Constitution of the Cons

ANALYSES OF GROUND WATER TABLE E-2

	bezylout	by c				13	13	1	77	13	TT	11	11	1	11	11	13	3	님	
						0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	Hordness os CoCO ₃	Totol				80	8	117	986	157	73	841	11	Z.	118	100	153	98	н	
	Per	P E				25	32	21	2	36	077	99	92	69	17	53	R	26	66	
	Totol dis-	solids mdd ui				128	150	193	564	230	150	194	186	190	200	232	324	320	370	
		(SiO ₂) Other constituented																		
		Silico (SiO ₂)				8	36	39	841	27	22	98	20	8	746	39	42	57	017	
-	uoi I	Boron (B)				0.1	0.1	0.0	0.2	0.0	0.1	0.1	0.0	0.1	0.0	0.1	0.3	0.3	9.6	
millio	E	Fluo- ride (F)				0.1	0.0	0.1	0.2	0.1	0.1	0.1	0.2	0.2	0.1	0.1	0.2	0.02	0.05	
ports per million	equivolents per million	frote (NO ₃)				1.6	0.0	0.02	0.05	2.4	0.03	2.8	5.3	4.4	0.00	1.2	0.00	0.02	0.03	
۵	ednivo	Cho-				0.0	0.0	0.0	22 0.61	3.5	0.0	0.0	0.07	2.5	0.05	6.0	12	0.71	0.47	
9	- 1	Sul - fote (SO ₄)				1.4	5.8	1.4	35	6.2	3.4	0.0	3.8	01.0	1.4	4.8	27 0.57	33	0.19	
ation of property		Bicor- bonote (HCO ₃)	(9)	77		132	155	3.07	141	3.43	142	2.90	159	164	165	3.15	255	2.84	282	
10,000		orbon- CO ₃)	ON NO	EY (6-		0.0	0.0	0.00	0.03	0.07	0.0	2 0.05	0.00	0.0	0.00	0.03	7 0.12	0.10	0.20	
1	2	Potos-Carbon- sium ofe (K) (CO ₃) (IN REGI	E VALL		1.6	1.9	2.1	6.0	0.02	0.02	2.8	0.0	0.0	0.0	3.2	7.8	8.9	0.05	
		Sodium (No)	LAHOWIAN REGION (ND.	SURPRISE VALLEY (6-1)		13 0.55	20	1.5	1.90	14	23	2.05	2.55	1.90	11 0.48	31,	2.00	2.50	130	
		Colcium Magne- (Co) (Mg)				4.5	8.1	11 0.87	63	1.11	7,00	0.21	0.0	0.15	8.6	9.2	1.15	8.0	0.0	
		Colcium (Co)				24	22	1.47	1.20	2.03	25	15	4.2	17 0.86	33	25	38	21	0.02	
		五				8.2	7.8	8.0	8.3	4.8	8.2	8.3	60	8.0	8.1	8.4	8.3	8.3	8.5	
Spacific	conduct-	(micro- mhos of 25° C)				202	240	270	365	330	225	592	263	560	255	300	1,50	420	250	
	Temp	e 1						26	99		99	09				99			29	
	Oote	sampled				8-7-63	8-7-63	8-7-63	8-7-63	8-6-63	8-7-63	8-7-63	8-6-63	8-6-63	8-6-63	8-6-63	8-6-63	8-6-63	8-6-63	
	Stote well	other number			MDB&M	40N/16E-11G1	-36FL	-3661	40N/17E-20C1	12N/16E-6R2	-2117	- 34FI	43K/16E-20B1	-33ML	45N/16E-17D1	-1901	46N/16E-13Cl	-25R2	-2981	
		Owner and use				L. Cockrell domestc	D. I. Grove	J. Biconda irrigation	B. Cambron stock - fish pond	Surprise Valley Lumber Codomestic	J. B. Laxague domestic - stock	E. Cook domestic	G. W. Warren	F. Arreche domes.ic - stock	L. Manks domestic	L. Hill domestic - irrigation	R. W. Peterson domestic	J. Stocksberry stock	H. Talbote irrigation	

o Desiminal by addition of constituents

A Grovimatric defarmination.

A Analysis by U.S. designed youthly of Water Bronch (U.S.S.S.), Pocific Chemical Consultants (PC.C.), Lain Lebendray (L.L.),
Terminal Testing Laboratory (T.T.L.) or State Capatrinent of Water Resources (D.W.R.) as indicated.

Terminal Testing Laboratory (T.T.L.) or State Capatrinent of Water Resources (D.W.R.) as indicated.

Terminal Testing Laboratory (T.T.L.) or State Capatrinent of Water Resources (D.W.R.) as indicated here as \$\frac{0.00}{0.00} \text{cate}\$ (C.D.).

1		State wall			Specific					Miner	Mineral constituents		<u>_</u>	parts per millian equivalents per millian	parts per militan valents per mill	millian			Total		Hardnes	-	
Section Section Table Section Section Table Section	bno renwO	nymber and ather number	Dots	Ten Ten Ten	ance (micra- mhas	£	Calcium (Ca)		Sadium (Na)	sium-Ca	arbon- Bi	1		<u> </u>				Other constituents ^d	- sip pevios sprios ui bbm	To boar	as CaCo		olyzed y c
134/138-0111 7-15-63 56 137 60 6.05 6.07 6.05 6					0123 0							5	4_		-	-	-					-	
1407.99.2111 7.156.61 56 17 6.05									MADEL	NE PLAI	% (P-2	7											
Style=call Tide-of Style=call Tide-of Sty 150 Style=call Tide-of Style=ca		MDBSM									_										_		
SN/13E-011 Fife 5 SN SN SN SN SN SN SN	P. Garate stock	34N/15E-21L1	7-16-63	95	137	8.0		20.0											%				님
Color Saylabe-del T-16-63 Sa Gel Ba Sa Sa Sa Sa Sa Sa Sa	Unknown	35N/12E-24R1	7-16-63	54	1020	8.3		3.02							9.01	öl	o.l		929				13
This case This	State of California	35N/13E-26J1	7-16-63	53	1189	77.8		3.10							.53	o	جا		217				1
Thin the corp. Thin	P. C. Fredrickson	35N/16E-1BE1	7-16-63	52	630	9.8		5.8											924				3
THE COPP. 178-1581 7-136-63 59 520 8-1 1-22 6-55 1-35 6-50 6-50 6-50 1-35 6-50 6-50 6-50 6-50 6-50 6-50 6-50 6-5	Dodge Ranch stock	-1981	7-16-63	53	340	8.3		2.6											540				日
Figure 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.										KE VALL	4-9) XZ	~											
THEFFINE SHIPLE-SHORE THE THEFFORE THE THEFFORE THE THEFFORE THE THEFFORE THE SHIPLE-SHORE	L. Carnier irrigation	26N/16E-15E1	7-118-63	59	520	8.1		217						-					388				1
Figure 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	R. L. Slaughter domestic-commercia	27N/14E-26E1	7-18-63		185	7.5		2.4			_								154				1
High Revitable Shill shift a shill s	Town of Jamesville irrigation	28N/13E-9E1	7-18-63		861			5.1											170				님
Le Corp. 1781 (7.13-6) 5 6 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	State of California irrigation		7-17-63	55	046	9.6	-	0.85											929				크
hamed Selv/15F-6ft (1-17-6) for the contribution (1-17-6) for the	Triami Cattle Corp.	-1781	7-18-63		520	8.5		0.96											001	19			1
Ranch unval 28N/ITR-1BM. 7-17-63 61 24.5 6.0 1.35 6.0 </td <td>Tanner Ranch domestic</td> <td>28N/15E-6K1</td> <td>7-17-63</td> <td>65</td> <td>1800</td> <td>8.0</td> <td>97.1</td> <td>47.00</td> <td></td> <td>1466</td> <td></td> <td></td> <td>- Ci</td> <td>Ė</td>	Tanner Ranch domestic	28N/15E-6K1	7-17-63	65	1800	8.0	97.1	47.00											1466			- Ci	Ė
7. 29N/13E-1401 7-17-63 78 68 8.2 10-12 1. 25 10-12 1.	Honey Lake Ranch public fountain	28N/17E-18K1	7-17-63	19	545	8.2		0.0									<u> </u>	_	180				Ħ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	E. Filipeli 1rrigation	-2011	7-17-63	92	562	8.2	10	0.08											180				1
29N/13E-1401 7-17-63 550 8-3 13 6 13 6 0.05 0.03 1 4 55 0.05 0.05 0.05 1.10 1.26 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0	M. A. Mallery domestic	29N/12E-15A1	7-18-63		88	6.7	21	5.0	16										160				1
	G. Brabham domestic	29N/13E-14G1	7-17-63		950	8,3	13	3.8	114										1,32				님

Discountair defermination.
 La Anaysis by U.S. Geologied Surway Quality of Water Branch (U.S.G.S.). Practice Chemical Consultants (PCCD), Lein Lebergery (L.L.).
 Terminal Strang Loboratory (ET.L.).
 Terminal Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).
 Strang Loboratory (ET.L.).</l

ANALYSES OF GROUND WATER TABLE E-2 (cont)

Store well Concurrent Con		P				-				
Since well Control word Collection Margine Section Collection Margine Section Collection Coll		Analyze. by c				크	13	Ħ	拮	크
State West Continue of State West Contin	as e up	CaCO ₃	PD.C.			0	0	0	0	0
Signate and Continued Co	H	so	Total			51	54	24	911	91
Signate and Continued Co		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ē			81	89	89	78	22
Columber of contract Columber	Total					₫ 05	682	586	88	134
Columbe Colu			Uner constituents							
Store well Colour		Silco	(S:0 ₂)			53	3	52	煮	98
Single well Content and	Light	Boron	<u>@</u>							
Single well Content and	# # # # # # # # # # # # # # # # # # #	Fluo	Ē			0.0	0.0	7.00	0.2	0.01
Single well Content and	valents per milli	ż	(NO ₃)			5.3	0.15	0.31	1.1	0.0
Solution Solution	DAIND	- PIG								
Continue Continue	.c	1	- 1	on't.)		1.18	194	3.9	9.6	0.03
Continue Continue	stituen	3icor-	HCO ₃)	0) (1-						
Continue Continue	ral cor	nogu	00°3)	TEX (6						
Continue Continue	M	otas-C	(K)	INCE VAL						
Single well Tarp Content Con		- B	(NO)	HONEY L						
Stole * Williams		- aubo	(Mg)							
Since Sinc		Ž.	(Ca)							
Stole will bore Tamp Godget		¥								
Single well Single well Single well Single well Single well Single well Single well Single well Single well Single well Single well Single well Single well Single well well well well with well well well well well well well wel	Specific	ance (micro-	mhos at 25°C)							
Since well number ond other number of 2804/14E-1801 7 2904/14E-1801 7 304/2E-2101 7 304/2E-3332 7		Temp In oF				3		19		70
In Informina		Date				7-17-63	7-17-63	7-17-63	7-17-63	7-18-63
Owner and Urs Trutham Fauch domestic M. Long Tritigation Tritigation Gomestic G	State well	number and			MDB&M	29N/14E-4N1	29N/14E-18R1		-3082	30N/12E-33W2
		Owner and	98.0			Prudham Ranch domestic	M. Long domestic	State of California irrigation	J. Dewitt domestic	California-Pacific Utility Co industrial

Determined by defined of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of constituents.
 Definition of

ANALYSES OF GROUND WATER TABLE E-2 (cont)

10 10 10 10 10 10 10 10		-			Spacific conduct-				*	inerol	Mineral constituents	e 8	DAIND	ents per	parts per million equivalents per million	uo		Totol	- Lie	Hardness	-	
SOUTH MINE WALLEY 5-5.01 SOUTH MINE WALLEY 5	pH Calcium (Co)	Temp ance pH Calcium mhas (Co)	ance pH Calcium mhos (Co)	pH Calcium (Co)	Calcium (Co)	Co) (N			Potas- sium (K)	Carbon- ate (CO ₃)	Bicar- bonate (HCO ₃)		Chia- ride (CI)	rrate (NO ₃)		Boran S (B) (:	SiO2) Other canstituents ^d	solved solids in ppm	sod-	ŏ l l		by
Column C								SOUTE		MALLEY												
Color Colo	MDB&M																			_		
1	12N/18E-3A1 9-17-63 118 7.4 14 0.70	118 7.4	7.7	7.7		70 · 10	0 0					1.2	0.13	0.02		0.0		75	83	777	0	
Color Colo	-3C1 9-17-63 70 7.0 6.8 0.34	70 7.0	7.0	7.0		8.34						0.02	0.5	0.00		0.0		25		27	0	ñ
1.1 1.1	-3F1 9-17-63 130 7.4 17	130 7.4	7.4	7.4		28.						2.1	0.0	0.0		0.0		95	20	25	0	DWR
13 14 15 15 15 15 15 15 15	-331 9-17-63 72 7.0 8.3	72 7.0	7.0	7.0		W 4					_	1.6	0.00	0.00		0.0		84	27	56	0	DAR
13 14 15 15 15 15 15 15 15	-5L1 9-17-63 101 7+4 10 0.51	101 7.4	7.4	7.4		0.12						0.5	0.00	0.00		0.0	58	80	59	35	0	크
Northing Northing No.	-5P1 9-17-63 98 7.0 4.4 0 0.22	98 7.0	7.0	7.0		4 19						7.7	0.00	0.00		0.0	02	93	19	17	0	1
NORTH: TABLE CALLER CALL	-29L1 9-17-63 80 7.0 8.4 0.42	80 7.0	7.0	7.0		7.						4.3	0.0	0.00		0.0	21	8	17	23	0	3
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,								NOR		VALLEY	6-5.02											
1, 0 0, 0	14N/16E-1C1 9-24-63 135 7.6 17 0.86	135 7.6	7.6	7.6		28.						2.9	0.00	0.00		0.0	25	986	177	99	0	
1.0 1.0	-1M1 9-24-63 130 7.7 $\frac{16}{0.78}$	130 7.7	7.7	7.7		9 2						1.4	0.00	0.01		0.0	08	100	13	65	0	ы
1.0 1.0	15N/16E-24A1 9-24-63 165 7.5 17 0.85	165 7.5	7.5	7.5		7.8						0.00	3.5	3.1		0.0	56	971	10	73	0	3
1	-25c1 9-24-63 160 7.0 17.0 03.84	160 7.0	7.0	7.0		1,84						3.4	1.4	1.4		0.0	53	120	77	19	0	크
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15N/17E-6J1 9-24-63 167 7-9 15 15 0-74	167 7.9	7.9	7.9		15						0.5	0.02	0.0	0.00	0.0	88	221	1,4	72	0	3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Thinke City Lumber Cd7El 9-24-63 110 7.44 12 40000011	110 7.4	7.4	7.4		21 5						2.4	2.5	0.00	0.0	0,0	19	72	77	147	0	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Minding Creek Mutual 16 N/16E-28E1 9-25-63 183 4.5 19. Whiter Codomestic	183 4.5	4.5	4.5		6.0						89 1.86	0.03	0.0	0.00	0.1	82	162	13	65	0	3
	-32D1 9-25-63 210 7-9 34 1.68	210 7.9	7-9	7-9		700						35 0.72	9.5	1.3	0.00	0.0	10	148	2	8	59	-1

o Determined by addition of constituents.

b determined determine determined by the property of the property o

ANALYSES OF GROUND WATER TABLE E-2 (cont)

	_	_																
	Analyzed by c			13	13		13	13	1		Ħ	1	TT	검	13		Ħ	II
dness	N.C.			0	0		0	0	0		0	0	0	п	0		0	0
				94	17		77	7,0	1,1		8	26	29	73	22		82	23
	2000	-		17%	93		33	33	70		7	13	77	13	000		33	61
P of	salved solids in ppm			8	807		96	92	98		06	98	104	921	98		168	178
	(SiO ₂) Other constituents ^d																	
				33	82		98	15	8		27	224	53	28	22		8	19
Tion	Baran (B)	_		0.0	3.1		0.0	0.0	0:0		0.0	0:0	0.1	0.0	0.0		0.1	0.2
r millio	Flug- ride (F)			0.00	3.0		0.00	0.00	0.00		0.00	0.2	0.1	0.00	0.0		0.0	0.04
parts per millian equivalents per millian	rate (NO ₃)			3.1	0.0		4.3	0.00	7.1		0.01	0:0	0.00	0.0	0.02		3.5	0.02
d	Chla- ride (CI)			0.0	3.35		0.00	0:0	0.03		0.0	0 0	0.00	8.9	5.0		1.4	0.42
nts in	Sul - fate (SO ₄)	, t.)		0.00	38		0.02	5.3	0.00		2.4	0.02	0.5	3.4	3.8		8.6 0.18	41
Mineral constituents	Bicar- bonate	.02 (Com't.)		1.02	1.53	9-9	76	69	57.0.93	5.7	83	1.32	92	87	1.01	7	2.60	1.39
neral c	Carbon- ate	VALLEY 6-5.		0.0	0.00	ALLEY	0.0	0.00	0:0	LEY 6-	0:0	0.00	0.00	0.00	0.0	LEY 6-	0.0	0.00
ž	Potas-Carbon- sium ate (K) (CO.)	E VALL		0.01	3.3	CARSON WALLEY	1.5	0.05	2.2	TRUCKEE VALLEY 6-5.7	1.1	0.0	0.02	2.4	2.8	TOPAZ VALLEY 6-7	3.0	1.4
	Sadium (Na)	NORTH TAROE		3.4	125 5.43	81	10 0.44	8.9	6.1	TRUCK	3.4	3.8	4.5	5.0	6.1	10	2.5	39
	Magne -	Ž	1	6.3	0.13		0.10	0.12	0.15		6.7	7.4	7.9	6.3	4.3		6.3	20.0
	Calcium (Ca)			8.0	0.20		14	13	13		13	0.51	0.60	19	13		22	1:00
	£			7.7	8.0		7.5	7.0	7.0		7.5	7.4	8.0	7.5	7.4		8.1	7.5
Specific	mhas	Coll		105	595		134	118	117		130	130	133	170	125		250	275
	Temp in °F			64	132													
	Date			9-54-63	9-54-63		9-17-63	9-17-63	9-17-63		9-25-63	9-25-63	9-25-63	9-25-63	9-25-63		9-18-63	9-18-63
State well	number and other number		MDB&M	16N/17B-13H1	16N/18E-30B1		11N/19E-24B1	-3502	11N/20E-7ML		17N/16E-8ML	-14F1	-1561	-1611	-17F1		8N/23E-16P1	-23E3
	Owner and			Riolo Club domestic	Bennett hot springs		A. Riggs domestic	Alpine County School District-domestic	Alpine County School District-domestic		Truckee Public Utility District municipal	Truckee Public Utility District municipal	Truckee Public Utility District municipal	Truckee Public Utility District municipal	State of California domestic		D. Radley domestic	H. W. Huffman domestic

a. Determined by addition of constituents.
b. Grownstric determinion. Survey, Quality of Woter Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Lain Laboratory (L.L.), C. Analysts by U.S. Galodytes (S. V.C.), Construction of World Presents (D.W.F.) or valued (S. V.C.), Lain Laboratory (L.L.), C. Analysts by U.S. Galodytes (S. V.C.), Lain Laboratory (L.L.), C. Analysts (D.W.F.), C. Analysts (D.W.F.), Lain C. Analysts (C.C.), Lain Laboratory (L.L.), C. Analysts (D.W.F.), Lain C. Analysts (D.W.F.), Lain C. Analysts (D.W.F.), Lain C. Analysts (D.W.F.), Reported (D.W.F.),

	Analyzed by c				ي د		:	-3		,		,	-3		
				:	4	ă,	i	17		1	3	ä	3	=	3
Hordness	CoCO ₃			0	0	0	٠	0		0	0	1	0	12	0
				3	ž	_	3	F		G.	¥,	2	1.9	1259	TI .
à	ded cent	-		31	39	ñ	(F	7/		3	-4	74.	20	Ä	ě
Į.	solids solids m ppm			1/-	102	144	1772	35		9774	8	ŝ	189	Š	\$
	Sitico Other constituents ^d (SiO ₂)														
	Silico (SiO,			2	8	2	2.	36		77	91	희	9	57	2
Million	- Baron (B)			000	0,1	10.1	0	* 		1.1	0.0	0.0	7.57	0.1	-:
equivolents per million	Fluo- ride (F)			0.00	0.00	0.01	0.0	2.0		710 0 15	0.00	0.00	0.00	0.1	00.00
volents	trate (NO ₃)			0.00	0.0	3.1	0.00	0.0		0.0	0.00	0.0	0.00	0.00	0.00
nbe	S			0.0	2.5	0.05	0.0	1.1		31	00.00	23:5	1.150	0.07	5.71 - 10
ř	Sul - fote (SO ₄)			0.11	2.1	0.23	8,6	16		1.24	2.9	5.07	12.27	17.0 0.71	23.0
Mineral constituents	Sicor- onote 4CO ₃)	on't.)		1.2	1.30	1.92	001	36.1 7.1	9	3/5	213	2.04	14.12	3.5	S12:
roi con	ofe (CO.)	00 7.00		0.00	0.00	0.00	0.00	0.0	LLEY	19 0.0	0.0	0000	0.00	010	0.00
Mine	Potos - Carbon - Bicar- sium ofe banate (K) (CO ₃) (HCO ₃)) Marin		0.03	0.04	0.09	0.03	0.05	POR" VA	0.29	1.0.	21.37	1:0	0.29	0.24
	Sadium (No)	POPAZ VALLEY		1.0	114	0.75	255	2.35	BRIKEPOR" VALLEY 6-8	315	3.9	3.80	25.70	3,6	1.2
	Mogne - Si sium (Mg)			0.20	2.9	5:5	3.6	2000		1 2 2	0.10	21	25.14	76.	0.71
	Caterum Mo			13	200	200 200 200	30	0.59		210 BX:0	14 0.09	1 25.5	1.24	1.00.1	1.51
	Ha	-		710	10	0.8	S.3	7.8		310	7.0	2 10.8	£0.100 €	13.2	.ε.
Spacific conduct-				130	144	210 8	30	20.		14.50	7 66	04.7:	2300	924	370
	Temp in °F (n				a	C/					2,		2		m .
	2			5)-	-63	-(3	20	r)-		, , , , , , , , , , , , , , , , , , ,	63-	7)-	á	5.9-	m -
	sample			9-18-63	9-18-63	9-16-(3	0-10-13	y-15-(3		9-17-(3	9-17-63	9-10-61	9-17-63	9-18-63	9-18-13
State well	other number		71D196-1	8N/25E-2902	9N/22E-24D1	D-75-VI	1453-4-5/NG	3005 -		411/245-4A1	-13F.	4N/25E=4M	-4F1	5N/25E-28K1	₽ _E -
	Owner and			Var. County H ad Deptdomentie	H. Willim dometic	E. Kin.y domentic	L. Midewell domentic	A. Sciorani domertic		"wekey" by Springs bh/248-4Al	Grewill Panch democife	O. F. Blackburn demotic	J. Van Dyck domentie	K. C. Stewart domer.le	nunteten)

o Determined by oddition of constituents

Defermined by oddition of constituents

Defermined retrosporately Quality of Water Booch (USGS). Pacific Chemical Consultants (PCC), Lein Laboratory (L.L.),

Terminal Testing Laboratory (TTL) of State Opportment of Water Presentes (O.W.R.) on indicate of the Constituent of the Constituent (A.N. Atsenic (As), Copport (Cu), Lead (Pb), Mangaines (Ms), Zinc (Z.N., Frystick Ohrer of Godescept os shown a tron (Fs), Aluminum (Al), Atsenic (As), Copport (Cu), Lead (Pb), Mangaines (Ms), Zinc (Z.N., Frystick Ohrer of Godescept os shown

Well number	Date sampled	Gross activity ^a	Date analyzed	
-------------	-----------------	-----------------------------	---------------	--

CENTRAL VALLEY REGION (NO. 5)

LAKE	ALMANOR	VALLEY	(5-7)

	LAKE ALMANOR VA.	TTTT ()-1)	
M.D.B. & M.			
28N/7E-5L1	8/13/63	8.8 - 5.1	9/17/63
28N/7E-5N1	8/13/63	2.2 + 5.0	9/17/63
28N/7E-7Al	8/13/63	5.7 + 5.1	9/17/63
28N/7E-7Hl	8/13/63	8.5 ± 5.1	9/17/63
28N/7E-18B1	8/13/63	4.4 ± 5.0	9/17/63
28N/7E-18D1	8/13/63	7.1 ÷ 5.1	9/17/63
28N/7E-18Ml	8/13/63	0.0 - 5.0	9/17/63
	INDIAN VALLE	Y (5 - 9)	
26N/10E-4E1	8/14/63	5.1 + 5.1	9/17/63
26N/10E-6E1	8/14/63	0.0 ± 5.0	9/17/63
26N/10E-16P1	8/14/63	2.4 ± 4.9	9/17/63
26N/10E-18Ml	8/14/63	0.0 + 4.9	9/17/63
26N/10E-23A1	8/14/63	0.0 ± 5.0	9/17/63
26N/10E-27R1	8/14/63	1.9 + 5.1	9/17/63
26n/10E-28ml	8/14/63	0.0 + 5.1	9/17/63
26N/10E-30F1	8/14/63	0.0 ± 5.1	9/17/63
27N/9E-35P1	8/14/63	4.3 + 5.1	9/17/63

Well number	Date sampled	Gross activity ^a	Date analyzed
At	MERICAN VALL	EY (5-10)	
M.D.B. & M.			
24N/9E-2Al	8/14/63	6.5 [±] 5.1	9/17/63
24N/9E-10H1	8/13/63	1.3 + 5.1	9/17/63
24N/9E-10L1	8/13/63	2.0 ± 5.1	9/17/63
24N/9E-16H1	8/13/63	0.0 ± 4.9	9/17/63
24N/10E-6N1	8/14/63	10.1 ± 4.8	9/18/63
24N/10E-8L1	8/14/63	0.0 ± 4.8	9/18/63
24N/10E-18D1	8/14/63	10.3 ± 4.8	9/18/63
24N/10E-19B1	8/13/63	3.1 ± 4.8	9/18/63
24N/10E-19D1	8/13/63	12.1 + 4.9	9/18/63
24N/10E-20D1	8/14/63	6.9 ± 4.8	9/18/63
SA	CRAMENTO VAL	LEY (5-21)	
	Solano C	ounty	
4N/3E-31F2	5/21/63	0.9 ± 3.6	8/7/63
5N/1E-1N1	5/21/63	1.7 ± 3.6	8/7/63
5N/2E-25K	5/21/63	0.0 + 3.6	8/7/63
6N/1E-19L2	5/17/63	6.0 ± 3.6	8/7/63
6N/1E-19Q1	5/21/63	0.0 + 3.6	8/7/63
6N/2E=20H2	6/6/63	0.7 ± 3.6	8/7/63
6N/1W-23L	5/21/63	1.2 ± 3.6	8/7/63
7N/1E-36C1	6/6/63	7.2 ± 3.6	8/7/63
8N/1E - 26F1	6/6/63	8.3 - 3.6	8/7/63

	Well number	Date sampled	Gross	activitya	Date analyzed
--	-------------	-----------------	-------	-----------	---------------

Yuba County

	1404 00	urcy		
M.D.B. & M.				
13N/5E-4B2	7/18/63	0.0 - 4.8	9/19/63	
14N/4E-7M1	7/23/63	0.0 ± 4.8	9/19/63	
14N/4E-22H1	7/23/63	0.9 ± 4.8	9/19/63	
14N/5E-15C1	7/18/63	0.0 + 4.8	9/19/63	
14N/5E-16C1	7/18/63	0.0 ± 4.8	9/19/63	
14N/5E-21G1	7/18/63	9.2 + 4.9	9/19/63	
14N/5E-22M1	7/18/63	1.0 ± 4.8	9/19/63	
14N/5E-30J	7/18/63	13.3 ± 5.0	9/19/63	
15N/4E-20J	7/23/63	0.0 ± 4.8	9/17/63	
15N/4E-31A1	7/23/63	0.0 ± 4.7	9/19/63	
15N/5E-19N1	7/23/63	6.0 ± 4.9	9/19/63	
16N/3E-11N1	7/19/63	8.0 ± 4.9	9/19/63	
16N/3E-11R2	7/19/63	0.0 ± 4.8	9/19/63	
16N/3E=23B1	7/19/63	6.2 ± 5.0	9/19/63	
16N/3E-26Q1	7/19/63	0.0 ± 4.8	9/19/63	
16N/4E-9D1	7/18/63	0.2 ± 4.9	9/19/63	

Well number	Date sampled	Gross activity ^a	Date analyzed		
Yolo County					
M.D.B. & M.					
6n/3E - 25A1	7/23/63	4.0 ± 4.6	11/7/63		
6n/3e-25A2	7/23/63	0.0 ± 4.5	11/7/63		
7N/3E - 9Jl	7/15/63	0.0 + 4.6	11/27/63		
7N/3E-31M1	7/15/63	14.9 ± 4.9	11/15/63		
7N/4E-33G1	7/23/63	5.3 + 4.7	11/15/63		
8N/1E-9E1	7/9/63	0.0 + 4.6	11/15/63		
8N/2E-13F2	7/15/63	6.8 ± 4.7	11/7/63		
8N/3E-5Pl	7/23/63	0.0 + 4.6	11/15/63		
8N/3E-5Ql	7/23/63	1.7 + 4.6	11/15/63		
8N/3E-19D1	7/15/63	6.1 ± 4.7	11/15/63		
8N/3E-19M2	7/15/63	6.5 + 4.7	11/15/63		
8N/4E-3Bl	7/23/63	1.5 + 4.6	11/15/63		
8n/1w-13G1	6/25/63	0.0 ± 4.6	11/17/63		
9N/1E-12A1	6/25/63	5.2 + 4.6	11/15/63		
9N/2E-10D1	7/10/63	5.0 ± 4.6	11/15/63		
9N/3E-7D2	7/29/63	2.1 + 4.6	11/15/63		
9N/4E-33L1	7/23/63	8.9 + 4.8	11/15/63		
9n/1w-16H1	6/25/63	4.3 ± 4.6	11/15/63		
9N/1W-30L1	6/25/63	0.0 - 4.5	11/15/63		
lon/lE-lcl	7/12/63	10.0 ± 4.8	11/15/63		
10N/1E-15G1	6/25/63	3.8 ± 4.7	11/15/63		

Well number	Date sampled	Gross activity ^a	Date analyzed
Ye	olo County (Continued)	
M.D.B. & M.			
10N/2E-1Q1	7/1/63	0.0 ± 4.6	11/8/63
10N/2E-27H1	7/1/63	0.0 + 4.7	11/8/63
10N/1W-4Dl	6/27/63	0.0 + 4.7	11/8/63
10N/1W-36K2	6/25/63	0.0 ± 4.7	11/8/63
10N/2W-16L1	6/27/63	11.1 + 4.8	11/8/63
10N/2W-17J2	6/27/63	0.0 ± 4.6	11/8/63
10N/2W-18F1	6/27/63	1.3 + 4.6	11/8/63
lon/2W-18F2	6/27/63	0.0 + 4.6	11/8/63
10N/2W-18L1	6/27/63	0.0 ± 4.5	11/8/63
lon/2W-23Al	6/27/63	2.6 + 4.6	11/8/63
11N/1E-4R1	7/18/63	10.1 + 4.7	11/8/63
11N/1E-17M1	7/1/63	9.1 + 4.6	11/8/63
11N/2E-22A1	7/1/63	8.1 + 4.7	11/8/63
11N/2E-32G	7/1/63	3.1 + 4.6	11/8/63
11N/2W-35J1	6/27/63	6.9 + 4.7	11/8/63
11N/3W-9Ql	6/28/63	4.9 ± 4.6	11/8/63
11N/3W-10E2	6/28/63	1.1 ± 4.5	11/8/63
11N/3W-26M3	7/2/63	4.5 ± 4.6	11/8/63
12N/1W-15N2	7/18/63	2.6 ± 4.6	11/8/63

12N/2W-2Al 7/18/63 8.0 ± 4.6 11/8/63

Well number Date sampled	Gross activity ^a	Date onalyzed
--------------------------	-----------------------------	---------------

SAN JOAQUIN VALLEY (5-22)

San Joaquin County

	Dan Boaquin C	Ourcy	
M.D.B. & M.			
ln/4E-3Nl	8/5/63	5.2 ± 4.6	11/26/63
ln/6E-4D1	9/3/63	5.6 + 4.6	11/26/63
ln/6E-10P1	9/9/63	11.3 ± 4.7	11/26/63
ln/6E-14H1	8/12/63	9.7 ± 4.7	11/26/63
ln/9E-18G1	8/13/63	8.6 + 4.6	11/26/63
2N/6E-27L1	8/12/63	5.6 ± 4.6	11/26/63
2N/7E-14N1	8/2/63	3.7 + 4.5	11/26/63
2N/8E-15L1	7/30/63	2.6 ± 4.5	11/26/63
2N/9E-7Gl	7/30/63	0.0 ± 4.6	11/26/63
3N/8E-8El	8/2/63	3.5 ± 4.7	11/26/63
4N/4E-14C1	8/2/63	0.0 + 4.6	11/26/63
4N/5E-8H1	8/2/63	0.0 ± 4.6	11/26/63
4M/6E-11P1	8/2/63	0.0 ± 4.7	11/26/63
4N/7E-23B3	8/2/63	0.0 - 4.6	11/26/63
5N/5E-33J1	8/2/63	0.0 ± 4.6	11/26/63
5N/8E-3LJ1	8/2/63	0.4 + 4.7	11/26/63
1S/4E-14M1	8/5/63	2.8 + 4.7	11/26/63
1S/5E-10H2	8/5/63	4.4 - 4.7	11/26/63
ls/6E-4Al	8/5/63	2.8 + 4.7	11/26/63
1S-7E-10A1	8/5/63	0.0 ± 4.6	11/26/63
1S-9E-8H1	8/2/63	10.0 - 4.7	11/26/63

o - Micromicrocuries per liter

Well number Date Gross activity Date analyzed

	San Joaquin Co	ounty (Continued)	
M.D.B. & M.			
2S/4E -1 Pl	7/24/63	46.7 - 5.3	11/26/63
2S/5E-22Q1	7/31/63	125.3 ± 6.4	11/26/63
2S/5E-23P1	7/31/63	0.0 - 4.5	11/26/63
2S/5E-29Dl	7/24/63	0.0 ± 4.6	12/12/63
2S/6E-20J5	7/26/63	0.0 ± 4.7	12/12/63
2S/7E-20R1	7/26/63	33.6 ± 5.2	12/12/63
3S/5E-8L1	7/31/63	6.7 + 4.8	12/12/63
3 s/ 5E-14D1	7/31/63	1.5 ± 4.8	12/12/63
3s/5e-26M	7/31/63	0.0 + 4.7	12/12/63
3S/6E - 7F1	7/26/63	4.2 + 4.8	12/12/63
3S/6E-22Q1	7/26/63	0.0 + 4.7	12/12/63

Stations of

Note: For see

PLATE D-1

SALINITY OBSERVATION STATIONL

Stations shown on map:

l Spoonbill Creek

2 Pittsburg

3 Collinsville

4 Ammaton

5 Threemile Slough Bridge

o Nio Vista Bridge

Isleton Bridge

Antioch

9 Antioch Bridge

10 Jersey Island

11 Threemile Slough

12 Oulton Point

13 Jan Andreas Landing

Opposite Central Landing

1, Dutch Slough

. est Contra Costa Trrigetion District

Clifton Court Ferry

18 Hossdale Bridge

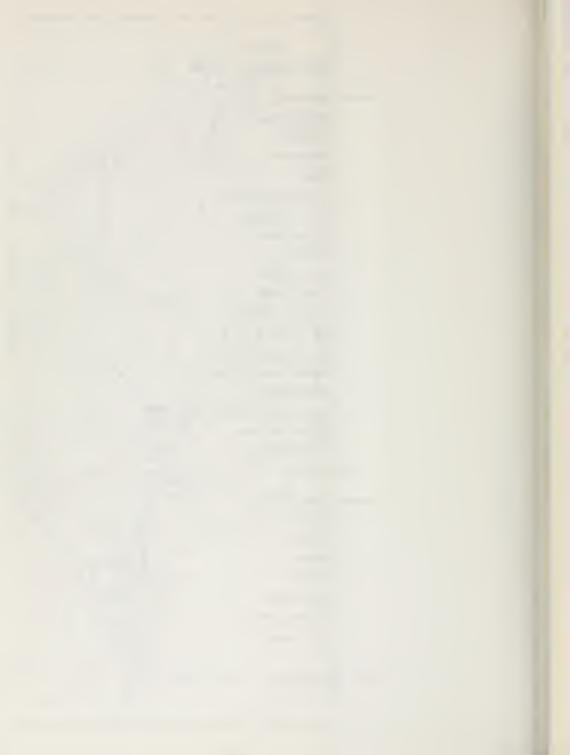
19 Vernalis

Stations off map:

Jobrante Beach

Crockett Benicia

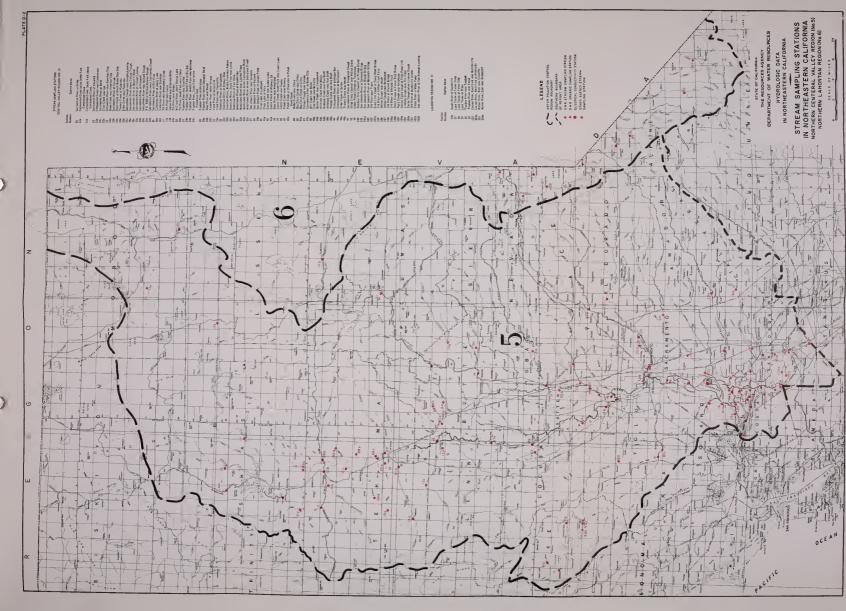
Kartinez

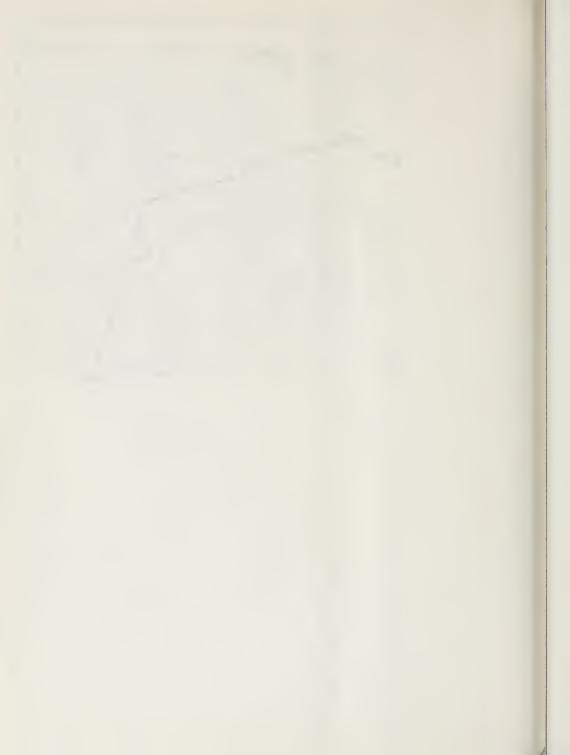

West Suisun

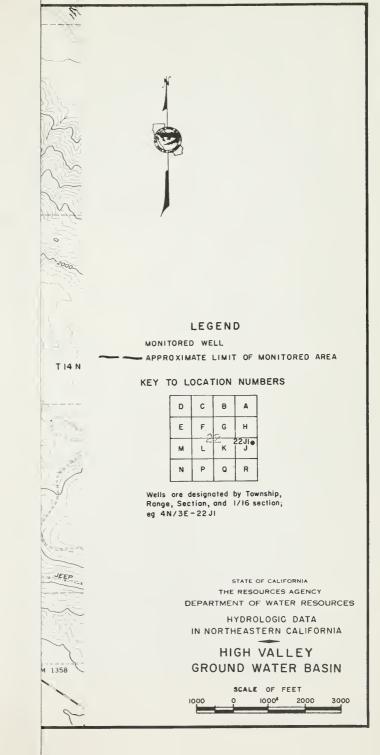
Innisfail Ferry

Port Chicago

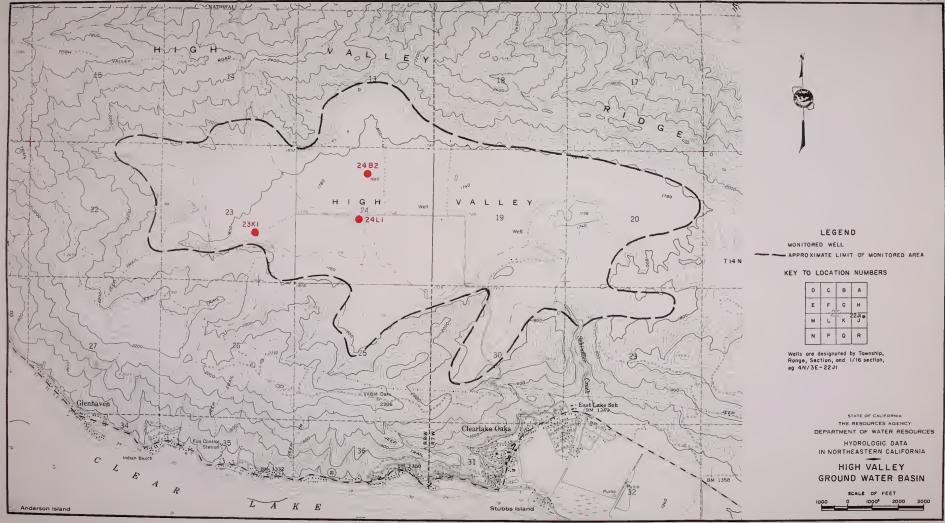
Note: For description of station locations see Table D-10

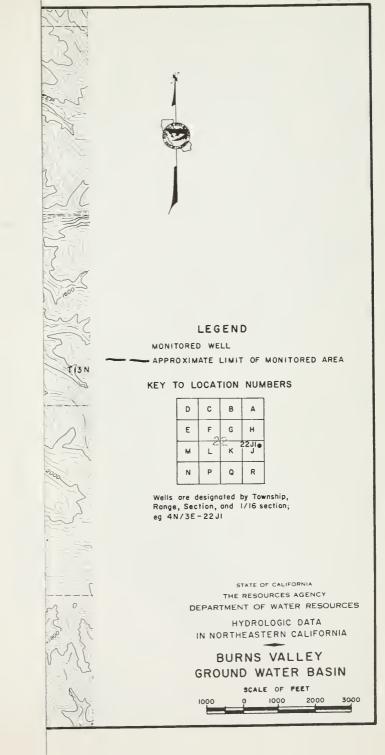


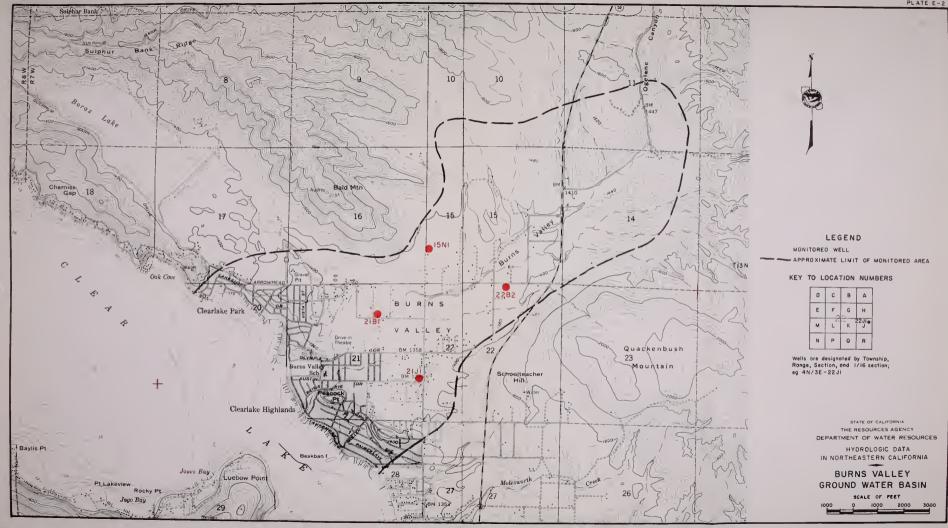



STREAM SAMPLING STATIONS
CENTRAL VALLEY REGION INC. ST

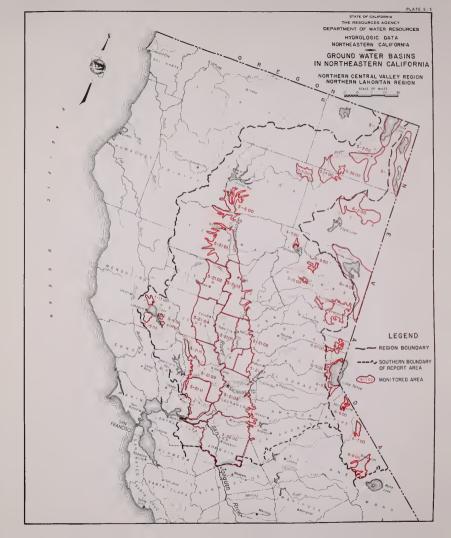
STREAM SAMPLING STATIONS		
	CENTRAL VALLEY REGIDN (NO. 5)	
Station		
Number	Station Name	
Harrise	Justion Rame	
11	Sacramento River as Deita	
110	Cottonwood Creek below North Fork	
	Cottomeood Creek	
116	Cottonwood Creek, South Ferk above	
	Cattenwood Creek	
1.2	Sacramento River at Keswick	
1.2b	Cottonwood Creek near Cottonwood	
12c	Sacramente River as Bend	
120	Clear Greek near 190	
13	Sacramento River near Hamilton City	
13a 13b	Steny Greek near Hamilton City	
136 13e	Sacramento River at Celusa Stony Creek at Black Butte Dam Site	
134	Thomas Creek at Paskenta	
13e	Elder Greek near Paskenta	
14a	Sacramento Slough near Knights Landing	
146	Sacramento River above Colusa Trough	
14c	Sacramento River at Boyer's Bend	
15a	Sacramento River at Toland Landing	
15b	Sacramento River at Freeport	
15c	Sacramento River near Mallard Slough	
15d	R.D. 1000 at Second Bannon Slough	
15e	Sacramento River above Sacramento Slough	
16	Sacramento River at Rio Vista	
16a	Calaveras River at Jenny Lind	
165	Calaveras River near Stockton	
17	Pit River near Montgomery Creek	
17a	Pit River near Canby	
17d 17e	Indian Creek near Crescent Mills	
17e 18	Pit River near Bleber	
16a	McCloud River above Shasta Lake Pit River, South Fork near Likely	
19	Feather River near Ordville	
192	Feather River, North Fork at Big Bar	
195	Fasther River Middle Enrit near Merriman	
19c	Feather River, Middle Fork near Merrimac Feather River, South Fork below	
	Ponderosa Dam	
20	Feather River at Nicolaus	
20a	Feather River below Shanghal Bend	
20b	Bear River near Mouth	
20c	Feather River above Verena	
21	Yuba River at Marysville	
21a	Yuba River near Smartville	
22	American River at Sacramento	
22a	American River at Nimbus Dam American River, Middle Fork near Audum	
22b 22c	American River, Middle Fork near Augusti American River, South Fork near Lotus	
22¢ 22¢	American River at Fair Daks	
23	Mokelumne River at Woodbridge	
23a	Mokelomne River near Lancha Plana	
23b	Mokelumne River below Consumnes River	
23c	Mokelumne River below Georgiana Slough	
27	San Joaquin River near Vernalis	
28	San Joaquin River at Antioch	
28b	San Joaquin River at Jersey Point	
41	Clear Lake at Lakeport	
4la	Clear Lake at Nice	
42	Cache Creek near Lower Lake	
42a	Cache Creek as Highway 53	
78	Bear River near Wheatfand	
79	Cache Creck, North Fork near Lower Lake	
80	Cache Creek near Capay	
81	Putah Creek near Winters	
8la	Putah Creek at Diversion to Putah	
84	South Canal Butte Greek near Chica	
-		







INDEX OF MONITORED AREAS

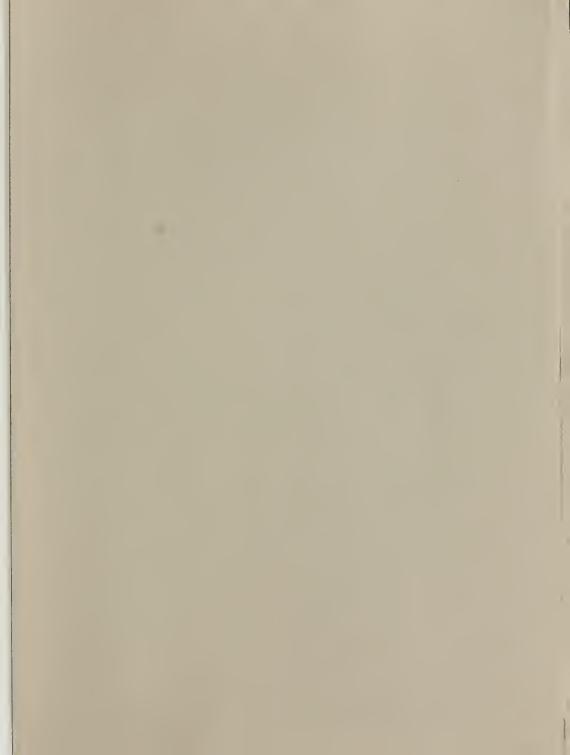

CENTRAL VALLEY REGION (NO. 5)

5-1.00	GOOSE LAKE VALLEY
5-2.00	ALTURAS BASIN
5-4.00	BIG VALLEY
	FALL RIVER VALLEY
	REDDING BASIN
	LAKE ALMANOR VALLEY
	INDIAN VALLEY
	AMERICAN VALLEY
	MOHAWK VALLEY
	SIERRA VALLEY
	UPPER LAKE VALLEY
	KELSEYVILLE VALLEY
	HIGH VALLEY
	BURNS VALLEY
	SACRAMENTO VALLEY
	Ol TEHAMA COUNTY
	.02 GLENN COUNTY
	.03 BUTTE COUNTY
	.04 COLUSA COUNTY
	.05 SUTTER COUNTY
	.06 YUBA COUNTY
5-21.	.07 PLACER COUNTY
	.08 SACRAMENTO COUNTY
	.09 YOLO COUNTY
	.11 SOLANO COUNTY
	SAN JOAQUIN VALLEY

LAHONTAN REGION (NO. 6)

SAN JOAQUIN COUNTY

6-1.00	SURPRISE VALLEY
6-2.00	MADELINE PLAINS
6-4.00	MONEY LAKE VALLEY
6-5.01	SOUTH TAHOE VALLE
6-5.02	NORTH TAHOE VALLE
6-6.00	CARSON VALLEY
6-7.00	TOPAZ VALLEY
6-8.00	BRIDGEPORT VALLEY
6-67.00	TRUCKEE VALLEY



F8 165

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

RENEWED BOOKS ARE SUBJECT TO IMMEDIATE RECALL

ICD LIBRATY DIJE SEP 29 1971

SEP 28 REC'D

JUN 1 3 1972 JUN 1 REC'D

FEB 19 1973 FEB 14 REGIO Tpm: 5 4000

> JUN 5 1975 JUN 4 REC'D

JUN 5 1976 JUN 5 1977 JUN 5 REC'D

FEB 5 1979 JAN 29 REC'D

APR 2 1979

JUN 1 8 1982

RECEIVED

JUN 22 10-6

DUVE COLLINGATOR JUL 4 1985

LIBRARY, UNIVERSITY OF CALIFORNIA, DAVIS

Book Slip-50m-12,164 (F772s4)458

· 42 8 "

JUN 20 80

399685

California. Dept. of Water Resources. Bulletin.

PHYSICAL SCIENCES LIBRARY TC824 C2 A? no.130:63 v.2 Appx.C-E c.2

LIBRARY UNIVERSITY OF CALIFORNIA DAVIS

399685

California. Dept. of Water Resources. Bulletin. Call Number:

TC824 (1) C2 A2 no.130:63

v.2

